A Port Digital Twin Model for Operational Uncertainty Management
DOI:
https://doi.org/10.19255/JMPM02810Keywords:
Digital Twin, Uncertainty Management, Port Operation, Berth Allocation, ReactivityAbstract
Lacking information challenges the managementof port operational uncertainty in estimating the situation tosupport a decision on reactivity planning. This paper applies Digital Twin (DT) to model a replicated virtual port operationfrom a real-world port of Thailand. The proposed DT modeloffers a tool to accelerate generating data of the port operation with configurable uncertainty. The model is validated by using generated data from the DT model compared with the real-world data. The result shows that the DT model produces the same behaviour as the real-world system. An outcome of this paper is a DT model eligible to generate port operation data for later applying with a machine learning to predict the port capacity under uncertainty to support reactivity planning.
References
Bierwirth, C., & Meisel, F. (2010, may). A survey of berth allocation and quay crane scheduling problems in container terminals. European Journal of Operational Research, 202(3), 615–627. Retrieved from https://www.sciencedirect.com/science/article/pii/S0377221709003579 doi:10.1016/J.EJOR.2009.05.031
Burns, M. G. (2018). Port management and operations. doi:10.4324/9781315275215
Cahyono, R. T., Flonk, E. J., & Jayawardhana, B. (2020, mar). Discrete-event systems modelling and the model predictive allocation algorithm for integrated berth and quay crane allocation. IEEE Transactions on Intelligent Transportation Systems, 21(3), 1321–1331. doi: 10.1109/TITS.2019.2910283
Ganin, A. A., Massaro, E., Gutfraind, A., Steen, N., Keisler, J. M., Kott, A., . . . Linkov, I. (2016, jan). Operational resilience: concepts, design and analysis. Scientific Reports 2016 6:1, 6(1), 1–12. Retrieved from https://www.nature.com/articles/srep19540 doi: 10.1038/srep19540
Grieves, M., & Vickers, J. (2017, jan). Digital Twin: Mitigating Unpredictable, Undesirable Emergent Behavior in Complex Systems. Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches, 85–113. Retrieved from https://link.springer.com/chapter/10.1007/978-3-319-38756-7 4 doi:
/978-3-319-38756-7 4
Hofmann, W., & Branding, F. (2019, sep). Implementation of an IoT- And cloud-based digital twin for real-time decision support in port operations. IFAC-PapersOnLine, 52(13), 2104–2109. doi: 10.1016/J.IFACOL.2019.11.516
Hossain, N. U. I., Nur, F., Hosseini, S., Jaradat, R., Marufuzzaman, M., & Puryear, S. M. (2019, sep). A Bayesian network based approach for modelling and assessing resilience A case study of a full service deep water port. Reliability Engineering I& System Safety, 189, 378–396. doi: 10.1016/J.RESS.2019.04.037
Huang, J., Wang, F., & Shi, N. (2014). Resource allocation problems in port operations: A literaturerevie w. In Proceedings - 2014 7th international joint conference on computational sciences and optimization, cso 2014 (pp. 154–158). doi: 10.1109/
CSO.2014.35
Iris, C¸ ., & Lam, J. (2019). Recoverable robustness in weekly berth and quay crane planning. Transportation Research Part B: Methodological, 122, 365–389. doi: 10.1016/j.trb.2019.02.013
Liming, G., Jun, W., & Jianfeng, Z. (2021, aug). Berth allocation problem with uncertain vessel handling times considering weather conditions. Computers and Industrial Engineering, 158. Retrieved from https://dl.acm.org/doi/abs/10.1016/j.cie.2021.107417 doi: 10.1016/J.CIE.2021.107417
Notteboom, T., Pallis, A. A., & Rodrigue, J.-P. (2022). Port economics, management and policy. Retrieved from https://porteconomicsmanagement.org/pemp/contents/part6/
Russell, D., Ruamsook, K., & Roso, V. (2020). Managing supply chain uncertainty by building flexibility in container port capacity: a logistics triad perspective and the COVID-19 case. Maritime Economics and Logistics. Retrieved from https://doi
.org/10.1057/s41278-020-00168-1 doi:10.1057/s41278-020-00168-1
The Loadstar. (2020a). Congestion problems at UK ports stacking up as rising imports drive delays. Retrieved 2020-12-08, from https://theloadstar.com/congestion-problems-at-uk-ports-stacking-up-as-rising-imports-drive-delays/
The Loadstar. (2020b). Peak season and port congestion surcharges spread to Asian tradelanes. Retrieved 2020-12-08, from https://theloadstar.com/peak-season-and-port-congestion-surcharges-spread-to-asian-tradelanes/
Umang, N., Bierlaire, M., & Erera, A. (2017). Real-time management of berth allocation with stochastic arrival and handling times. Journal of Scheduling,20(1), 67–83. doi: 10.1007/s10951-016-0480-2
UNCTAD. (2020). Review of maritime transport:2020 (S. N. Sirimanne, J. Hoffmann, & W. Juan, Eds.). New York: United Nations Publications. Retrieved from https://unctad.org/system/files/official-document/rmt2020 en.pdf
Vugrin, E. D., Warren, D. E., & Ehlen, M. A. (2011, sep). A resilience assessment framework for infrastructure and economic systems: Quantitative and qualitative resilience analysis of petrochemical supply chains to a hurricane. Process Safety Progress, 30(3), 280–290. Retrieved from https://aiche.onlinelibrary.wiley.com/doi/10.1002/prs.10437 doi:10.1002/PRS.10437
Xiang, X., & Liu, C. (2021). An expanded robust optimisation approach for the berth allocation problem considering uncertain operation time. Omega (United Kingdom). doi: 10.1016/j.omega.2021.102444
Xiang, X., Liu, C., & Miao, L. (2018, dec). Reactive strategy for discrete berth allocation and quay crane assignment problems under uncertainty. Computers & Industrial Engineering, 126, 196–216. doi:10.1016/J.CIE.2018.09.033
Yu, H., Ning, J., Wang, Y., He, J., & Tan, C. (2021, oct). Flexible yard management in container terminals for uncertain retrieving sequence. Ocean & Coastal Management, 212, 105794. doi: 10.1016/J.OCECOAMAN.2021.105794
Yu, J., Tang, G., Song, X., Yu, X., Qi, Y., Li, D., & Zhang, Y. (2018, jun). Ship arrival prediction and its value on daily container terminal operation. Ocean Engineering, 157, 73–86. doi: 10.1016/j.oceaneng.2018.03.038
Zhen, L. (2015). Tactical berth allocation under uncertainty. European Journal of Operational Research, 247(3), 928–944. doi: 10.1016/j.ejor.2015.05.079
Zhou, C., Xu, J., Miller-Hooks, E., Zhou, W., Chen, C. H., Lee, L. H., . . . Li, H. (2021, apr). Analytics with digital-twinning: A decision support system for maintaining a resilient port. Decision Support Systems, 143, 113496. doi: 10.1016/J.DSS.2021.113496
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Siraprapa Wattanakul, Sébastien Henry, Napaporn Reeveerakul, Yacine Ouzrout

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.