
r Mohamed-Larbi Rebaiaia
Department of Mechanical Engineering, University of Laval, Quebec (QC), Canada
mohamed-larbi.rebaiaia@cirrelt.ca

r Darli Rodrigues Vieira
Université du Québec à Trois-Rivières, Québec, Canada
darli.vieira@uqtr.ca

KEYWORDS f product design f axiomatic design f design structure matrix f systems decomposition

The concept of

DSM AND ADT INTEGRATION in the

PRODUCT
DESIGN
PROCESS

r A B S T R A C T

In manufacturing, product design is often very complex and requires the participation of a large number

of services and material resources. Managing these resources can be very costly in terms of time, risk and

money. The use of well-known tools (e.g. PERT, CPM and Gantt) alone cannot establish a detailed and

optimized planning in the execution of different stages and tasks of a project. To address this problem the

Design Structure Matrix (DSM) and the Axiomatic Design Theory (ADT) appear to be an interesting solution.

This paper presents a DSM and ADT integrated tool as a part of the decomposition–integration problem in

product design development process, where the latter is more concerned with mapping customer’s needs

from functional requirements to design parameters, while the former is better suited to modelling the

interactions and the integration of the design parameters. It also presents some algorithms related to both

DSM and ADT used for manipulating projects-based DSM information, coordination and timing require-

ments, and provides a complementary between them. The discussion in this paper addresses the imple-

mentation of concurrent design engineering which is the greatest challenge faced by design managers.

APPROACH

1. Introduction and
Definitions

To remain competitive in the current economy man-
ufacturers have been encouraged the creation of depart-
ments to promote research, design, and new product
development (NDP). Without an efficient policy for new
product development, companies may disappear. Contin-
uous innovation in product development (PDP) appears to
be the success key even though it is complicated, uncertain,
dynamic and very risky. The most competitive companies
are always looking for new techniques and technologies
to market their products that must be better in terms of
quality, competitively priced, and have a time of design and
manufacturing as short as possible. Kneuper (2007) defines
the PDP management as a processes control with respect to
“three sacred cows”: “time, quality and budget”. According to
these three requirement factors, decreasing the project time
or increasing the project quality influence the final project
cost. However, the design process proves to be crucial in the
factor risk view. One solution to coordinate between these
factors is to provide design window flexibilities in order to
put back on the process itself and reworking critical parts of
the design (project) and thus avoiding defects or inconsist-
encies that may arise during the execution phases. Another
admissible solution works for decreasing PDP working time.
If possible it avoids that all process tasks are performed
independently by adopting the concept of concurrent engi-
neering as a strategy for achieving shorter time to market,
reduced development costs, and higher-quality products.
Engineers admit that concurrent engineering process do not
only consider performance and process design issues, but
many other lifecycle issues such as reliability, environmental
impact, service, testing, and so on (1995). In practice several

companies have reported that by implementing the concept
of concurrent engineering as a new method of managing
construction equipment projects, they achieved 30% savings
in development costs and 60% savings in development time.
Defining the PDP process using mathematical frameworks
in addition to information exchange processing and comput-
er’s facilities could be an advantage for design, communica-
tion and coordination.

Several authors define the PDP process as a collection of
methods and procedure that companies use to concretize
new ideas, market opportunities to design new products, or
to improve others and bring them to the market. Tradition-
ally, a PDP process reflects the specific design requirements,
objectives and constraints, and follows a series of iterative
steps known as product lifecycle stages. A sketch of a series
of stages for product cycles that are well-known, stable and
under control is shown in Figure 1 (2009). Nonetheless, PDPs
can also vary dynamically so that sophisticated techniques
for minimizing the defaults risk and improving sales have to
be applied. Krubasik (1998) argues that not all product devel-
opment is similar. In this topic, Zamenopoulos and Alexiou
(2007) propose a clever spiral form of PDP staged process
which requires managers to evaluate risk before starting a
new step of the process. A version of the spiral PDP intro-
duced by Barry Boehm (1986) is illustrated in Figure 2. Note
that this version is similar but more detailed than the Xerox
copier/printer software presented in Unger and Eppinger
(2009). It clearly shows that feedback-based design is still
possible for reaching managing objectives.

A PDP planning project involves the completion of hun-
dreds or even thousands parts or entities not simply coordi-
nated or structurally well-linked.

PDP projects are very complex and especially dynamic.
Besides, different disciplines and domains can influence the
behavior of a product design or a project, therefore, manag-
ers and engineers must understand how they interrelate with
and influence each other. Danilovic and Brownig (2004) give
an overview of the environment that interacts with PDP.

FIGURE 1. A Software PDP Lifecycle planning FIGURE 2. Boehm General Spiral Process (Software Product) [from
http://commons.wikimedia.org/wiki]

Phase 2
product definition

Phase 1
product concept

r
e
v
i
e
w

r
e
v
i
e
w

Phase 3
design &
development

r
e
v
i
e
w

Phase 4
system test

r
e
v
i
e
w

Phase 5
acceptance
test & launch

Phase 5
results of trials
PDP update

Phase 4
implementation plan
alpha trial
support implementation
training implementation
PDP plan

Phase 3
code development
user document
introduction plan
support plan
PDP update

Phase 2
market requirements
spec. validation
user interface
software design
document spec
product strategy
product development plan

Phase 1
product proposal

r
e
v
i
e
w

Product specifications are a consequence of customer
requirements, and many other events that contribute to the
success or failure of a project. Figure 3 illustrates the four
domains defined in a PDP process. They are part of the axio-
matic design methodology and work such that for each pair
of adjacent domains, the left domain represents “what we
want to achieve” while the right one represents the design
solution of “how we propose to achieve it”. The four domains
are:

Customer The benefits customers seek.

Functional Functional requirements of the design solution

Physical Design parameters of the design solution

Process Process variables

Danilovic and Browning (2004) precise that this process

is like a web such that domains are interrelated and informa-
tion is flowing back and forth between them.

Many attempts have been applied to use different par-
adigms to represent the structure of a PDP components in
order to reduce as much as possible the relationship between
them. One of those solutions is attributed to Steward (1981)
who introduced the Design Structure Matrix (DSM) which is
also known as the dependency structure matrix. An alter-
native representation of the PDP uses the axiomatic design
principles, which according to Suh (1990), offers a systematic
approach to product design and production planning.

This paper presents two complimentary integrated tools
named DSM and ADT as a part of the decomposition–in-
tegration problem in product design development process,
where the latter is more concerned with mapping customer’s
needs from functional requirements to design parameters,
while the former is better suited for modelling the interac-
tions and the design parameters integration. The main ob-
jective of this work concerns first the decomposition process
as a part of concurrent engineering techniques. The follow-
ing section presents a brief summary of concurrency and

decomposition. Section 3 details DSM tools and algorithms.
ADT methodology is then highlighted in Section 4, while
Section 5 shows that the combination of DSM and ADT will
generate a more complete tool for designing and organiz-
ing the design process of products. Finally, conclusions are
drawn and future work outlined.

2. Concurrency and PDP Decomposition
The process of developing new products consumes time,

money and human resources, and it is a hard task. The cost
of a product development is proportional to the project’s
resources (people, machinery, materials) and duration.
When performed sequentially, the effort that is developed in
the project often ends up accumulating rework and increas-
ing different types of risks. Of course, this way of working
also has impacts on the composition of project costs. In
order to minimize the duration of the product development,
solutions such as concurrent engineering (CE) for products,
and concurrent construction (CC) in civil engineering and
architecture have been widely used in many projects.

Sequential engineering (SE) considers that a project is
composed by tasks that are executed one after another,
and the only constraint that binds them is the precedence
information relationship (exchanges). Three types of rela-
tionships have been reported by Ulrich and Eppinger (2004):
independent, dependant and interdependent. They are also
named, “serial”, “parallel” and “coupled” (see Figure 6). One
obvious thought is that, if PDP process consists of inde-
pendent tasks, fewer problems may arise by concurrently
executing these tasks and the problem becomes manageable.
According to Yassine and Braha (2003) the CE principles
are: iteration, parallelism, decomposition and stability. The
advantage of decomposing a PDP design is that it reduces
the complexity of the design process (1993).

The main principle of decomposing a product design
process is to break it into groups of activities (subprocess)
while detecting potential activities that could be worked
simultaneously (interleaving parallelism) or in parallel (free
parallelism). Pimmler and Eppinger argue (1994) that the
device’s function is decomposed into multiple sub-functions
allowing the team to find solutions for each of the small-
est pieces of the design. They propose a three-step method
which works as follows: 1 - decomposition of the system
into elements; 2 - documentation of the interaction between
elements, and clustering the elements into architectural and
team chunks. The literature on decomposition process has
not reflected the importance of this problem yet, and it is
not very extensive except in software engineering systems.
Research concerning PDP decomposition started with the
work of Alexander (1964), in which it was proposed a PDP
process that decomposes designs into minimally coupled
groups. Simon (1981) suggested that complex designs can be

FIGURE 3. Domains concept in a PDP process

organized using hierarchical struc-
tures consisting of nearly decomposed
systems. Johnson and Benson (1984)
developed a two-stage decomposition
strategy for design optimization. The
strategy is restrictive by considering
that sub-processes are independent.
Azarm (1987) applied decomposition
to problem solving using the concept
of monotonicity. Rogers (1989) incor-
porated the decomposition principle
when conducting research at NASA.

As PDP process may involve
coordination of many activities and
procedures, problems may arise when
describing interactions between the
generated sub-parts. Many solutions
have been proposed in order to over-
come such problem. Warfill and Hill
(1972) discuss about this issue and
suggest that the solution of complex
designs lies in understanding and con-
trolling the interactions between the
elements. Galbraith (1973) proposed a
clear distinction between the organ-
ization structure and the problem to

A B C D E F G H

1 X X X

2 X X X

3 X X

4 X X

5 X X

6 X X X

7 X X X

A B C D E F G H

1 X X X X X

2 X X X X X

3 X X X X X

4 X X X X X

5 X X X X X

6 X X X X X

7 X X X X X

A B C D E F G H

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X X X X X X

7 X X X X X X X X

FIGURE 4. Three types of matrices: (1st decom-
posable, 2nd non-decomposable with overlap-
ping parameters, 3rd non-decomposable with
overlapping activities).

be solved. Later, Ulrich and Eppinger
(2004) proposed a solution related to
the interactions between decomposed
parts of a system so that they can be
considered after the architecture is
defined.

Two well-known tools could be
used to represent the information
execution of a PDP (project), and they
are matrices and graphs. Why matrices
and graphs? The answer is simple--
they are natural, visual and could be
easily used to represent our thoughts,
and are mathematically well-founded.
For instance, matrix representing a
PDP task and its relationships can be
categorized as decomposed in such
a way that rows and columns can be
grouped in a form that the matrix can
be separated into mutually exclusive
sub-matrices as shown in Figure 4 (first
matrix. An entry “X” in this matrix
denotes that parameter j (j = A, B, C, …,
H) appears in activity i (i =1,…, 7)).

The matrices exhibited in Figure 4
show three characteristic patterns.
The first one presents a simple config-
uration which clearly highlights three
independent subsystems. Moreover, if
one draws the graph three sub-graphs
can be seen without any interaction
with each other (connected components
as defined in graphs theory). The others
are more difficult to be distinguished
as activities and parameters are over-
lapped. A good solution is precisely
to minimize as much as possible the
overlapping.

To deal with the overlapping ac-
tivities, Kusiak (1993) proposed four
actions which are: 1 - replacing an
overlapping activity with an alternative
activity that involves different param-
eters; 2 - decomposition of an activity
into sub-activities; 3 - removing an
overlapping activity whenever is possi-
ble, and 4 - the duration of an overlap-
ping activity can be shortened.

Kusiac et al. (1993) proposed two
interesting algorithms; they are called
Cluster Identification (CI) and Branch-
and-Bound Algorithms. The CI algo-
rithm proceeds as follows:

Cluster-Identification-
Algorithm.
Inputs:
• Incidence matrix as showed in Figure 5 (first
matrix).

• Two Boolean vectors V-rows and V-columns
are declared (they will memorize the marking).

Step 0. Set iteration k = 1.

Step 1. Select row I of the incidence matrix and
mark and put “1” in the position I of V-rows.

Step 2. For each entry of “X” crossed by
the horizontal line (“1” in V-rows) put “1” in
V-columns.

Step 3. For each entry of “X” crossed by
the vertical line (“1” in V-columns) put “1” in
V-columns.

Step 4. Repeat step 2 and step 3 until there are
no more crossed-ones of “X” in the matrix.

Step 5. Transform the initial incidence matrix
into another one by removing rows and
columns marked in V-rows and V-columns.

Step 6. If the last matrix is empty, stop,
otherwise increment k and go to step 1.

A B C D E F G H

1 X X X

2 X X

3 X X

4 X X

5 X X

6 X

7 X X X X

B C E H A F D G

1 X X X

5 X X X

7 X X X X

2 X X

4 X X

3 X X

6 X

FIGURE 5. (1st) example of a design matrix, (2nd)
resulting matrix after clustering algorithm
application.

3. Design Structure Matrix
The design structure matrix (DSM)

also known as dependency structure
matrix and its manipulating algo-

Concept	 design	 phase	

Concept	 design	 phase	

Concept	 design	 phase	

Process	

Variables	 Design	
Parameters	 Func8onal	

Requirements	 Customer	

Heads	

Customer	 domain	

Func8onal	 domain	
Physical	 domain	

Process	 domain	

APPROACH /// THE CONCEPT OF DSM AND ADT INTEGRATION IN THE PRODUCT DESIGN PROCESS

MAY-AUGUST 2013 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 98 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | MAY-AUGUST 2013

rithms, was originally developed by
Steward (1981) to analyse information
flow. DSM has been widely used in
managing complex projects in various
field of study such as building construc-
tion, semiconductor, automotive, aero-
space, telecom, manufacturing, factory
equipment, and so on. The DSM is a
useful tool for optimizing the compo-
nents composition of product develop-
ment in terms of minimizing interfaces.
It has the ability to analyse functions,
facilitate the tracking of components
in a new design, decompose a system
into elements, integrate elements into
modules or subsystems and can, for
example, perform an optimal sequenc-
ing of tasks that need to be performed
as part of a product development effort
(Fernandez, 1996). Concretely, DSM is
just a matrix structure which does not
express all the relevant information
required for defining logic process, but
it is a general method for representing
and analyzing system models to better
plan complex projects involving inter-
dependencies, facilitating modularity,
sequencing to minimize cost and sched-
ule risk in a variety of application areas.
DSM representation evolved later to
Domain Mapping Matrices (Danilovic &
Browning, 2004) and Multiple-Domain
Matrices (Gebala & Eppinger, 1991).
The DSM-based project plan can be
converted to a graph-based model or a
graphical evaluation and review tech-
nique (graphical PERT) for representing
the static process structure and the
dynamic progress logic and calculus.
Figure 8 shows some types of activity re-
lations in DSM and their corresponding
representations in a graph represented
in Figure 7. A DSM can be modeled by
an incidence matrix as defined in graph

theory. In the DSM, like a project task
or a system component, the relation-
ships between activities are represented
by marking the cell formed by rows
and the corresponding columns. For
example, if there is an arrow from Node
A to Node B, then a ‘X’ mark is placed
in the intersection cell of Row A and
Column B. This means that activity B
follows activity A. Diagonal elements
have no significance and are normal-
ly blacked-out (see Figure 8). A design
process is composed of three types of
basic behavioral patterns, namely serial
(dependent or decoupled), parallel (in-
dependent or uncoupled), and iterative
(interdependent or coupled) ones. Figure
6 gives a graphical representation of
these 3 types of design.

The DSM is most useful when
activities are listed in the order of their
execution in the project. Changing the
order of activities is called partitioning
and a partitioned DSM shows which
tasks are parallels, series or coupled.
The problem of DSM model is its static
representation of activities and the lack
in exhibiting the timing requirements
of tasks as project duration enriches
a DSM model such as, for example, to
apply simple heuristics directly on the
activities graph such as to evaluate the
minimal and maximal duration of a
project. We can remark that the project
information cannot be used directly
from the DSM unless we use some algo-
rithms to manipulate them.

According to the mathematical side
of DSM interpretation, a DSM associat-
ed with a graph is a binary square ma-
trix with m rows and m columns, and
the number of marked cells corresponds
to the links between nodes which are
admitted equal to n. The easiest way

to model a directed graph in terms of
DSM is to use a binary matrix so that
the DSM can be defined as follows:

Definition 1. The DSM is a Boolean
matrix A = [aij]n×n composed of elements
such as each element is defined accord-
ing to (1).

aij =
1 if (aj → ai)

otherwise
⎧
⎨
⎩

(1)

where a link (aj → ai) between aj and
ai denotes that component aj transfers
information to component ai so that the
execution of ai cannot be proceeded if
aj did not complete its execution. The
diagonal cells are blackened. An empty
row represents a source node and an
empty column represents a terminal
node.

Figure 8 presents the DSM corre-
spondent to the graph in Figure 7. The
product consists of 12 subsystems labe-
led Modules A, B, C,…, L.

Note that once the design process
has been mapped into a DSM, two
specific algorithms are applied. The first
one concerns the partitioning which
consists of re-sequencing the design
activities to maximize the coordination
between them and to detail the circu-
lar path supporting the information
exchange. The algorithm identifies the
activities in the loop and clusters them
as a block on the diagonal of the design
matrix (Gebala & Eppinger, 1991)º. The
second algorithm (tearing) is to re-se-
quence within the blocks of coupled
activities to find an initial ordering to
start the iteration which consists in
the removal of dependency between
coupled tasks.

(a) Serial (b) Parallel (c) Coupled
A B A B A B

A A A X

B X B B X

FIGURE 6. Activity Networks and DSM equivalence FIGURE 7. Any relationship graph

A B C D E F G H I J K L

A 1

B

C 1

D 1 1 1 1

E 1 1 1

F 1 1

G 1 1

H 1 1 1

I 1 1 1

J 1 1 1 1

K 1 1

L 1 1 1 1

FIGURE 8. DSM corresponding to the graph
in the Figure 7.

3.1 Partitioning a DSM

Partitioning is a special operation that re-orders and re-groups the DSM rows
and columns such that the new DSM arrangement does not contain any feedback
marks. For complex engineering systems, partitioning algorithms try to move
feedback marks as close as possible to the diagonal creating blocks. Collapsing
these blocks into single task simplify the form of the matrix and thus those of the
project.

There are several heuristics used in DSM partitioning. However, they are
all similar, with a difference in how they identify information cycles (loops or
circuits). The main objective of such heuristics is attempting to find a sequence of
the design activities which allows the DSM matrix to become lower triangular. If
the activity tasks can be sequenced so that each one begins only after it receives
all the information it requires from its predecessors, then no coupling remains in
the design problem.

The following algorithms (see the three boxes below) decompose a design ma-
trix if possible.

The grouping of components into a class or a group of components can be
understood as the creation of a module composed by the merging of these compo-
nents. Algorithm 3 consists of identifying loops (blocks) of information by powers
the adjacency Matrix.

A B C D E F G H

A 1 1

B 1 1

C 1

D 1 1

E 1 1 1

F 1 1

G 1 1

H 1 1

FIGURE 9. Sample DSM.

A H F D E C G B

A 1 1

H 1 1

F 1 1

D 1 1

E 1 1 1

C 1

G 1 1

B 1 1

FIGURE 10. Partitioned DSM of figure 11
(first step).

A-H-F-D E-C-G-B

A-H-F-D 1

E-C-G-B 1

FIGURE 11. Reduced DSM (final step).

Example 1 – Application of Algorithm 1f Algorithm 1 (Partitioning)

1. Identify components without input

from the rest of the elements in the matrix

(source nodes). Those elements can easily

be identified by observing an empty column

in the DSM. Place those elements to the left

of the DSM. If there is more than one source

node, put them according to their position

in the initial matrix. Once an element is

rearranged, it is removed from the DSM (with

all its corresponding marks) and step 1 is

repeated on the remaining elements.

2. Identify the components that deliver no

information to other elements in the matrix

(target nodes). Those elements can easily

be identified by observing an empty row in

the DSM. Place those elements to the right

of the DSM. Once an element is rearranged,

it is removed from the DSM (with all its

corresponding marks) and step 2 is repeated

on the remaining elements.

3. If after steps 1 and 2 there are no

remaining elements in the DSM, then the

matrix is completely partitioned; otherwise,

the remaining elements contain information

circuits (at least one).

4. Determine the circuits using any method.

5. Collapse the elements involved in a single

circuit into one representative element and

go to step 1.

f Algorithm 2 (Partitioning)

Input: DSM matrix;

S.Modules = null;

Let n be its dimension

Identify components without inputs and
put them in a queue list;

Start node v (the last one in the queue)

index = 0 /* nodes number counter */

Stack = empty /* empty stack of nodes */

forall v in DSM

 if (v is an unvisited node

 call depth_1st_search(v)

until (u == v)

end.

procedure depth_1st_search(v)
 index (v) = index

 lowlink(v) = index

 index = index + 1

 push(v) /* Push v on the stack */

 L = Children(v) /* node v successors */

 forall (v, u) in L

 if u not visited yet?

 depth_1st_search(u)

 lowlink(v)= min(lowlink(v), lowlink(v)

 elseif (u in Stack)?

 lowlink(v) = min(lowlink(v), u.index(u))

 if (lowlink(v) == index(v)?

 Copy Stack in S.Modules

 repeat

 u = Stack.pop

 end

A

B

C

D

E

F

G

H

I

J

K
L

APPROACH /// THE CONCEPT OF DSM AND ADT INTEGRATION IN THE PRODUCT DESIGN PROCESS

MAY-AUGUST 2013 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 1110 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | MAY-AUGUST 2013

3.2 Tearing a DSM

Once the blocks are identified and
placed into a block-triangular form, the
activities have to be sequenced within
the blocks by removing the dependency
relationship temporarily. As the last
decision of which task must be discard-
ed is up to the manager’s judgement,
the result of tearing will be highly sen-
sitive from one person to another. To
obtain more information and a detailed
description of the tearing process, we
strongly encourage the reader to read
the work of Browning and Eppinger
(2002).

A B C D E F G H I

A

B 1 1

C 1 1

D 1 1

E 1 1

F 1 1

G 1

H 1 1

I 1

FIGURE 12. Graph corresponding to DSM of
figure 13.

A E F I C B G H D

A

E 1 1

F 1 1

I 1

C 1 1

B 1 1

G 1

H 1 1

D 1 1

FIGURE 13. Partitioned DSM obtained with
algorithm 2.

Example 2 – Application of Algorithm 2

A B C D E F G

A 1 1

B 1

C 1 1 1 1

D 1

E 1 1

F

G 1 1

1. Select tasks free of input and output links (E
and F are such tasks), we get:

A B C D E F G
A 1 1
B 1
C 1 1 1 1
D 1
E 1 1
F
G 1 1

2. Remove rows and columns relatives to E
and F.

A B C D G
A 1 1
B 1
C 1 1 1
D 1
G 1

3. Matrix product: Power 2.

f Algorithm 3.

1. Exclude from the DSM every row and
every column because they does not require
information from other tasks and provide
no information to the other tasks.

2. Multiply the matrix by itself to determine
loops.

3. Stop when reaching the higher power.

Example 3 – Application of Algorithm 3

A B C D G
A 1 1 1
B 1
C 1 1 1
D 1
G 1

4. Matrix product: Power 3.

A B C D G
A 1 1 1
B 1
C 1 1 1 1
D 1
G 1

5. Matrix product: Power 4.

A B C D G
A 1 1 1 1
B 1
C 1 1 1 1
D 1
G 1

6. Matrix product: Power 5.

A B C D G
A 1 1 1 1
B 1
C 1 1 1 1
D 1
G 1

7. Task E and Task F are re-introduced in the final
matrix, F as the first column and E as the last
row. Task A and Task C have just one entries so
they are pushed to the last just before E, and
then followed by D with has two entries.

At last, the final matrix is:

F B D G C A E
F
B 1
D 1
G 1 1
C 1 1 1 1
A 1 1
E 1 1

3.3 Illustrative examples from the Literature

3.3.1 A case study 1 – Power Line Communication Kit (Reused from [31])

FIGURE 14. Case study of an existing Power line Communication (PLC) product.
(Source: Luh et al., page 15, ref. [31]).

FIGURE 15. PLC product and its DSM (initial matrix).

FIGURE 16. Matrix result after clustering.

FIGURE 17. Hierarchical of component interaction.

3.3.2 A case study 2 – (Source: [36])

N0. Part Name

X
1 the operating structure design

X
4 vessel design

X
4 plant layout/general arrangement (GA)

X
4 shipping design

X
6 structure lifting design

X
6 pressure drop analysis

X
8 process engineering

X
8 structural documentation

X
9 size valves

X
11 wind load design

X
11 seismic design

X
14 piping design

X
14 process and instrumentation diagram (PandID)

X
14 equipment support

X
17 pipe flexibility analysis

X
17 design documentation

X
17 foundation load design

X
19 insulation structural design

X
19 structural bill of materials (BOM)

X
20 assembly design

FIGURE 18. Initial design Table, non-partitioned (first matrix),
and Partitioned (second matrix).

4. Axiomatic Design Theory
 Axiomatic design is a systems design methodology de-

veloped by Dr. Suh at MIT (1990, 2005, 1999) in the Depart-
ment of Mechanical Engineering in the 90s. This method
consists of using matrix methods to systematically analyze
the transformation of customer needs into functional re-
quirements, design parameters, and process variables.

 Axiomatic design provides a systematic way of sat-
isfying many functional requirements (FRs) at the same
time without introducing coupling of functions and cre-
ating integrated physical systems. ADT provides means
of decomposing top-level requirements (FRs) and design
parameters (DPs) until the creation of leaf-level FRs and DPs
that can be implemented to construct the system according
to the resulting design decision architecture. Let FRs a set
of function requirement and DPs its corresponding referred

APPROACH /// THE CONCEPT OF DSM AND ADT INTEGRATION IN THE PRODUCT DESIGN PROCESS

MAY-AUGUST 2013 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 1312 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | MAY-AUGUST 2013

http://en.wikipedia.org/wiki/Systems_design
http://en.wikipedia.org/wiki/Methodology
http://en.wikipedia.org/wiki/Matrix_methods

design parameters be selected by the project team through
the development of different solutions so that each DPs is
related to a corresponding FR, and related such that a spe-
cific DP can be adjusted to satisfy its FR. The design process
is composed by four domains as illustrated in Figure 19 and
partially shown in Figure 3, namely: 1 - customer domain,
functional domain, physical domain and process domain.
The role of each domain is detailed in (Suh, 2005, 1999).

FIGURE 19. The foundation axioms used in Axiomatic Design Theory are:

Axiom 1: Maintain the independence of the functional requirements
(FRs).

Axiom 2: Minimize the information content of the design such
that as defined by equation (2). The formal definition of information
content for a particular design parameter is:

Design range: the tolerance of the admissible variation of DPs.

System range: The capability of the system.

Common range: The overlap between design and system ranges.

P
i
 : Probability of satisfying (See Figure 20).

To compare two different designs based on their in-
formation content, it is necessary to compare the sums of
information contents of each design. For further details, the
reader is invited to read Suh (2005).

Axiom 1 requires that functional requirements be
independent of each other, enabling each FR to be satisfied
without affecting any other FR.

Axiom 2 provides a quantitative measurement of any
design. It is useful in selecting the best design which satisfy
Axiom 1.

 Furthermore, in ADT there are some theorem and
corollary to organize the logic side of the process. They are
considered as rules for adopting a sense of interpretation.
For example, Corollary 3 says: “Integrate design features
into a single physical part if the functional requirements
can be independently satisfied in the proposed solution”

and Theorem 5, “When a given set of FRs is changed by the
addition of a new FR, by substituting one of the FRs with a
new one, or by selection of a completely different set of FRs,
the design solution given by the original DPs cannot satisfy
the new set of FRs any longer. Consequently, a new design
solution must be sought”.

 A typical Design model using the ADT is presented as
follows (Nam, 2001) (At the high level):

FR1= Satisfy specific customer requirements
FR2 = Produce economically
FR3 = Deliver fast
DP1 = Product variety
DP2 = Position of the decoupling point
DP3 = Production flow.
 In ADT methodology, the decomposition process

starts with the decomposition of the overall functional
requirement and its corresponding DP is determined for the
same hierarchical level in the physical domain. The iterative
process is called zigzagging and at each level of the hierarchy
the FRs and DPs can be mapped to each other according to
the equation (3). Figure 21.

The design matrix DM can be expressed as (4).

where

A small change in any parameter may cause a deviation
in the functional requirement.

In linear design Aij are constants. The obtained expres-
sion is

As equation 2 satisfies the Axiom 1 of the ADT, it can be
interpreted as “choosing the DPs set which satisfies a given
set of FRs”. Equation (3) shows that each element of the DM

I = log (2)= log
1
Pi

system range
common range

{FR} = [DM]{DP} (3)

(5)

FIGURE 20. The relationship among design range, the common range,
the system range and probability distribution (from [25]).

FIGURE 21. Hierarchical decomposition in ADT process.

(4)[DM] =
A11

Am1 Amn

A1n

Aij = δFRi (i= 1, ..., m and j = 1, ..., n)
δDPi

ΔFRi = δFRi ΔDPi

δDPi

(6)

FRi = ∑ Aij DPj

n

i=1
(7)

depend on any particular design parameter. In addition, as
discussed previously in DSM paragraph, the three types
of designs may exist (uncoupled, decoupled and coupled)
in the sense that uncoupled design occurs when each FR
is satisfied by exactly one DP, and the resulting matrix is
diagonal. When it is possible to organize DM matrix as a
lower triangular, the design is decoupled, and therefore,
the FRs can be satisfied. The third case shows that FRs
cannot be satisfied independently, exactly as shown in
Figure 6. Moreover, it can be noticed that decoupled design
has less tolerance than uncoupled design, and the increase
of the order of design makes the last DP’s tolerance small-
er. If the number of DPs is greater than the number of FRs
then the design is redundant (Nordlund, 1996).

4.1 Example. Architecture for a Glass-Bulb Design
(Source: http://www.axiomaticdesign.com).

 The glass bulb is a unit element of a TV tube, which
is sometimes called “Brown tube.” The tube consists of a
shadow mask, an electron gun, a band, and a glass-bulb
that consists of a panel and a funnel. The panel is the front
part and the funnel is the rear part of the glass bulb shown
in Figure 22.

The original manual design process consisted of the
following 5 steps.

Step 1. Product requisition which consists in receiving a customer
order containing the basic design specifications.

Step 2. Generation of an initial design using a CAD software.

Step 3. Generation of the tube three-dimensional shape using a
software program, which uses the output of Steps 1 and 2 as well as
part of the information generated in Step 5, and then perform Step 4.

Step 4. Stress analysis.

Step 5. Generation of final design. Some part of this information is
used in Steps 3 and 4, requiring iterations between Steps 2 through 5.

The functional requirements of this design are at each
level of the process and are presented in the Table 1.

The hierarchy and the zigzagging processes are de-
tailed in the Figure 23.

FR
i
/DP

i DENOMINATION
FR

1 Construct the basic information of the product

FR
11 Assign an ID number to a new product

FR
12 Construct a set of data for a new product

FR
2 Establish the product shape, produce economically

FR
21 Check the curvature, panel flatness, and funnel axis profile

FR
22 Calculate the three-dimensional shape

FR
23 Consider the manufacturability

FR
3 Verify the mechanical characteristics of the product

FR
4 Generate the product drawing

FR
41 Represent the shape of the product

FR
42 Display accessory of the drawing

FR
231 Check the useful screen dimension for the panel

FR
232 Evaluate the ejectability

FR
233 Examine the deflection angle of a scanning line for the funnel

DP
1 A set of basic data - those supplied by the customer

DP
11 Representative code of new product

DP
12 A set of specific data for a new product

DP
2 The three-dimensional shape structure (panel/funnel)

DP
21 Inside/outside curvature for the product

DP
22 Characteristic geometric equation for the product

DP
23 A set of data for mold manufacture

DP
231 Distance of blending circle center position

DP
232 Angle of the side wall

DP
233 Inside curvature of the yoke part

DP
3 Loading conditions on the panel and funnel

DP
4 A set of accessory drawing data

DP
41 A set of data for product design

DP
42 A set of data for accessory

TABLE 1. Functional and design product for the ADT (Source: http://
www.axiomaticdesign.com/technology/ADSChapter5.html

FIGURE 23. Hierarchical and zigzagging topology.

matrix is represented as a partial derivative to indicate the
strong dependency between FRs and DPs. The derivative
values can be “0” or any other value. Using a derivative value
of “0” means to say that the functional requirement does not

FIGURE 22.
Example of a
glass-bulb

APPROACH /// THE CONCEPT OF DSM AND ADT INTEGRATION IN THE PRODUCT DESIGN PROCESS

MAY-AUGUST 2013 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 15

The hierarchical relationships between
functional and physical domains depicted
in Table 1 are presented in the following
matrices illustrated in Figure 24.

FIGURE 24. (High-level coupled design, (b)
high-level decoupled design, (c) triangular matrix,
it is a decoupled design, (d) decoupled design, (c)
diagonal matrix, uncoupled design, (f) uncoupled
design.

5. Integrating ADT and DSM
As ADT is firstly used in the product

creation stage, it is incapable of analysing the
system’s interactions. This mission is treated
efficiently by the DSM, however, the DSM can-
not address descriptive facilities at the stage
of design creation. Therefore, it is logical to
believe that their combination will generate a
more robust tool for designing and organizing
product design process. Many attempts have
been made in order to address this process
(Axiomatic design of mechanical systems,
1995) and (Maurer, 2007) the objective was to
obtain the design information flow at an early
stage of the design, and thus allowing the use
of the DSM at the time when the most impor-
tant decisions about the system and design are
made. The procedure for doing this could be as
proposed by (Maurer, 2007): (1) using existing
DSM-based knowledge to accelerate AD; (2)
conversion of DM to DSM to get the inter-
actions among DPs at the conceptual design
stage; (3) using derived DSM to evaluate the
design result of AD from the DPs interaction
view; and (4) using derived DSM to conduct
project planning at an early design stage.

Dong and Whitney (2001) showed that if
the AD matrix can be expressed analytically
and one design parameter (DP) is dominant
in satisfying a particular functional require-
ment (FR), then the triangulated design ma-
trix is equivalent to the DSM of the design
parameters. The algorithm proceeds in three
major steps:
1. Construct the Design Matrix (DM).
2. In each row of the DM choose the dominant
entry.
3. Permute the matrix by exchanging rows and
columns so that all dominant entries appear on
the main diagonal.

To demonstrate the transition from an
ADT to its corresponding DSM, we use a
simple example that can be summarized
according to the procedure of Dong and
Whitney (2001).

We assume the functional requirements
at the highest level are available.
Step 1. Construct the design matrix (ADT).

DP1 DP2 DP3
FR1 X X
FR2 X X
FR3 X X

Step 2. Choose an output variable from each
row. They are indicated by X0.

DP1 DP2 DP3

FR1 X X0

FR2 X0 X

FR3 X0 X

.The significance of the output variable choice
is:

DP3 = f (FR1, DP1)
DP1 = f (FR2, DP2)
DP2 = f (FR3, DP3)

Step 3. Permute the rows so that the output
variables are on the diagonal. Then rename the
rows according to the DP of the columns, we get
the DSM:

DP1 DP2 DP3
DP1 X0 X
DP2 X0
DP3 X X0

6. Conclusions
Product design process is a very complex

task to accomplish as the number of activi-
ties and their interaction increases. De-
composition and partitioning may involves
preliminary solutions but not sufficient to
contribute to facilitate the description of the
global design process, sharing the project
between team component, and incorporat-
ing time, cost and risk requirements. DSM
and ADT are two compact representations
of the design process architecture infor-
mation structure, and from which it can be
possible to monitor the design process from

the beginning to the end. DSM and ADT
are able to work independently from one
another, however, they are surprisingly more
effective when used together.

In this paper a design decomposition
model is proposed in which Axiomatic
Design Matrices (ADT) map the functional
requirements to design parameters, while
the Design Structure Matrices (DSM)
provide a structured representation of the
system development context. The process
of decomposition and integration using
matrices as information support is easier
when using simple algorithms and heuris-
tics presented in the paper. Furthermore,
transition from one model (DSM) to another
(ADT) was clearly identified through the use
of several examples. In the near future, this
work will include an evaluation and study
on advanced algorithms for enhancing and
clarifying sequence-coupled tasks based on
ADT and DSM tools to lightening up PDP’s
processes.

Alexander, C. , Notes on the synthesis of form, Harward
University Press, Cambridge, 1964.

Axiomatic design of mechanical systems (1995) . Spe-
cial 50th anniversary combined issue of the journal
of mechanical design and the journal of vibration and
acoustics, Trans ASME, Vol. 117, pp. 1–10.

Azarm, S. , Optimal design using Two-level monotonici-
ty-based decomposition method, ASME design auto-
mation conference, Boston, Mass., pp. 41-48. 1987.

Blecker T. , Complexity and variety in mass custom-
ization systems: analysis and recommendations,
Management decision, Emerald, Vol. 44, NO 7, pp.
908-929, 2006.

Boehm B , A Spiral Model of Software Development and
Enhancement”, ACM SIGSOFT Software Engineering
Notes, ACM, 11(4):14-24, August 1986.

Browning, T. R. and Eppinger S. D , Modeling Impacts
of Process Architecture on Cost and Schedule Risk in
Product Development IEEE Transactions on Engi-
neering Management, vol. 49, no. 4, pp. 428-442, Nov.
2002.

Chen, S-J and Lin, Li , Decomposition if interdependent
task group for concurrent engineering, J. Computers
& Industrial Engineering, Vol. 44, N0 3, pp. 435-459,
2003.

Cho S-H and Eppinger S.D. , Product Development
Process Modeling using advanced simulation, ASME
conference, Pittsburgh, Pennsylvania September 9-12,
2001.

Danilovic, M.; Browning, T. , A Formal Approach for
Domain Mapping Matrices (DMM) to Complement
Design Structuring Matrices (DSM). In: Proceedings
of the 6th International Design Structure Matrix
Workshop, Cambridge, UK, 12.-14.09.2004. Cam-
bridge: University of Cambridge 2004.

Dong and Whitney Qi Dong and D. Whitney , Designing
a requirement driven product development process,
DTM conference, September 9–12, , pp. 11–20, Pitts-
burgh, PA, 2001.

Fernandez, C. , Integrating analysis of product architec-
ture to support effective team co-location, Master
thesis, MIT, 1996.

Galbraith, Jay R. , Designing Complex Organizations,
Addison-Wesley, Reading, MA, 1973.

Gebala D. A. and Eppinger S.D , Methods for analyzing
design procedures, DE-Vol. 31, Design Theory and
Methodology, ASME 1991.

Jang B-S, Yang Y-S, Song Y-S, Yeun Y-S and Do S-H ,
Axiomatic design approach for marine design prob-
lems, Marines Structure, Vol. 15, Issue 1, pp. 35-56,
Elsevier, 2002.

Johnson, R. C. and Benson, R. C. , A Basic Two-Stage
Decomposition Strategy for Design Optimization,
ASME Journal of Mechanisms, Transmissions, and
Automation in Design, 106, 380-386, 1984.

Kneuper, R. , CMMI - Verbesserung von Softwareproz-
essen mit Capability Maturity Model Integration.
Heidelberg: dpunkt, 2007.

Krubasik, E.G. , Customize your product development.
Harvard Business Review, November–December,
1998.

Kusiak, A. and J. Wang , “Decomposition of the Design
Process,” Journal of Mechanical Design, Vol. 115,
December, 1993.

Luh D-B, Ko Y-T and Ma C-H , A structural matrix-based
modelling for designing product variety, Journal of
Engineering design, Vol. 22, N) 1, pp. 1-29, 2011.

Maurer, M. , Structural Awareness in Complex Prod-
uct Design, Dissertation, Technische Universität
München, 2007.

Nam P.S. , Axiomatic design, MIT-Pappalardo Series in
Mechanical Engineering Oxford University Press,
New York, 2001.

Nordlund M. An information framework for engineering
design based on axiomatic design, Doctoral Thesis,
Stockholm, Sweden, Royal Institute of Technology,
1996.

Pimmler T. U. and Eppinger D. , Integration analysis of
product decompositions, ASME Design Theory and
methodology Conference, Minneapolis, Sep. 1994.

Rogers, J. , A knowledge-based tool for multilevel decom-
position of complex design problem. Hampton, Vir-
gina: NASA TP2903, Langley Research Center, 1989.

Simon, Herbert A. The Sciences of the Artificial, 2nd
edition, MIT Press, Cambridge, MA. 1981.

Smith R. P. and Eppinger S. , Deciding between sequen-
tial and parallel tasks in engineering design, Working
paper N0 3858, Sloan School of Management, MIT,
Oct. 1995.

Steward, D.V. , The design structure system: a method
for managing the design of complex systems, IEEE
Transactions on Engineering Management, 28 (3), pp.
71–74, 1981.

Suh, N.P. , “A theory of complexity, periodicity and the
design axioms”, Research in Engineering Design, Vol.
11 No.2, pp.116-31, 1999.

Suh, N.P. , Complexity: Theory and Applications, Oxford
University Press, New York, NY, 2005.

Suh, N.P. , The Principles of Design, Oxford University
Press, New York, NY, 1990.

Ulrich K and Eppinger S. , Product Design and Develop-
ment. NewYork: McGraw Hill, 2004.

Unger D. W. and Eppinger, S. D. , Comparing product
development processes and managing risk, Int. jour-
nal Product development, Vol. 8, N0 4, pp. 382-402,
2009.

Warfield, John and J. Douglas Hill , (Edited by Benjamin
B. Gordon), “A Unified Systems Engineering Con-
cept,” Battelle Monograph, No. 1, June 1972.

Yassine A. and Braha D. , Complex concurrent engineer-
ing and the design structure matrix method, Concur-
rent Engineering: research and application, vol. 11, N0
3, Sept. 2003.

Zamenopoulos, T. and Alexiou, K. , Towards an antici-
patory view of design. Design Studies, 28 (4), 411–436,
2007.

re
fe

re
nc

es
B

I
B

L
I

O
G

R
A

P
H

I
C

authors

r Darli Rodrigues Vieira is a
professor at the Université du Québec
à Trois-Rivières (UTQR), and holds
the research chair in Management
of aeronautical projects. Previously,
he was a professor at the Federal
University of Parana (UFPR) and the

Instituto Tecnologico de Aeronautica (ITA). He is the
author of several works, among which stands out the
following recent books: Analysis and design of logis-
tic networks (with Alain Martel), Distribution Centers
Project (with Michel Roux), Audit Logistics (with
Michel Roux) and Product Design Management (with
Abdelaziz Bouras and Denis Debaecker). His profes-
sional experience includes over 20 years of activities
in the aeronautical, automotive, steel, cosmetics,
telecommunications, and ports sectors.

r Mohamed-Larbi Rebaiaia is an
associate professor of production
management and operations manage-
ment successively at the Department
of Mechanical Engineering and the
Department of Operation and Deci-
sion Systems, both located at Laval
University, Canada. From 1983 until

2006 he taught software engineering and operational
research at Annaba and Batna Universities, Algeria.
M. Rebaiaia received a PhD and Msc in computer
sciences and operational research from these two
universities and a PhD in industrial engineering at the
Department of Mechanical Engineering, Laval Univer-
sity. His primary research interests are in the areas
of software engineering, operations and production
management, scheduling and timetabling, project
management, systems reliability and networks
performance and more specifically, techniques for
determining the availability of telecommunication
systems. He has published more than 60 publica-
tions in international journals and conferences’
proceedings. Rebaiaia is a member of OR Society in
Switzerland.

FR1
FR2
FR3
FR4

X
X
X
X

0
X
X
X

0
0
X
0

X
X
0
X

X
X
X
X

X
X
X

X
0
0

0
X
0

0
0
x

X
0

0
X
X

0
0
X

X
X

0
X

0
X

0
X
X
X

0
0
X
0

0
0
0
X

DP1
DP2
DP3
DP4

DP1
DP2
DP3
DP4

FR1
FR2
FR3
FR4

FR231
FR232
FR233

DP231
DP232
DP233

FR21
FR22
FR23

DP21
DP22
DP23

(a)

(b)

=

=

=

=

=

=

(c)

(d)

(e)

(f)

FR41
FR42

DP41
DP42

FR11
FR22

DP11
DP22

APPROACH /// THE CONCEPT OF DSM AND ADT INTEGRATION IN THE PRODUCT DESIGN PROCESS

MAY-AUGUST 2013 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 1716 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | MAY-AUGUST 2013

