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The concept of 

DSM AND ADT INTEGRATION in the 

PRODUCT
DESIGN
PROCESS

r   A B S T R A C T 

In manufacturing, product design is often very complex and requires the participation of a large number 

of services and material resources. Managing these resources can be very costly in terms of time, risk and 

money.  The use of well-known tools (e.g. PERT, CPM and Gantt) alone cannot establish a detailed and 

optimized planning in the execution of different stages and tasks of a project. To address this problem the 

Design Structure Matrix (DSM) and the Axiomatic Design Theory (ADT) appear to be an interesting solution. 

This paper presents a DSM and ADT integrated tool as a part of the decomposition–integration problem in 

product design development process, where the latter is more concerned with mapping customer’s needs 

from functional requirements to design parameters, while the former is better suited to modelling the 

interactions and the integration of the design parameters. It also presents some algorithms related to both 

DSM and ADT used for manipulating projects-based DSM information, coordination and timing require-

ments, and provides a  complementary between them. The discussion in this paper addresses the imple-

mentation of concurrent design engineering which is the greatest challenge faced by design managers.

APPROACH

1. Introduction and
Definitions

To remain competitive in the current economy man-
ufacturers have been encouraged the creation of depart-
ments to promote research, design, and new product 
development (NDP). Without an efficient policy for new 
product development, companies may disappear. Contin-
uous innovation in product development (PDP) appears to 
be the success key even though it is complicated, uncertain, 
dynamic and very risky. The most competitive companies 
are always looking for new techniques and technologies 
to market their products that must be better in terms of 
quality, competitively priced, and have a time of design and 
manufacturing as short as possible. Kneuper (2007) defines 
the PDP management as a processes control with respect to 
“three sacred cows”: “time, quality and budget”. According to 
these three requirement factors, decreasing the project time 
or increasing the project quality influence the final project 
cost. However, the design process proves to be crucial in the 
factor risk view. One solution to coordinate between these 
factors is to provide design window flexibilities in order to 
put back on the process itself and reworking critical parts of 
the design (project) and thus avoiding defects or inconsist-
encies that may arise during the execution phases. Another 
admissible solution works for decreasing PDP working time. 
If possible it avoids that all process tasks are performed 
independently by adopting the concept of concurrent engi-
neering as a strategy for achieving shorter time to market, 
reduced development costs, and higher-quality products. 
Engineers admit that concurrent engineering process do not 
only consider performance and process design issues, but 
many other lifecycle issues such as reliability, environmental 
impact, service, testing, and so on (1995). In practice several 

companies have reported that by implementing the concept 
of concurrent engineering as a new method of managing 
construction equipment projects, they achieved 30% savings 
in development costs and 60% savings in development time. 
Defining the PDP process using mathematical frameworks 
in addition to information exchange processing and comput-
er’s facilities could be an advantage for design, communica-
tion and coordination.

Several authors define the PDP process as a collection of 
methods and procedure that companies use to concretize 
new ideas, market opportunities to design new products, or 
to improve others and bring them to the market. Tradition-
ally, a PDP process reflects the specific design requirements, 
objectives and constraints, and follows a series of iterative 
steps known as product lifecycle stages. A sketch of a series 
of stages for product cycles that are well-known, stable and 
under control is shown in Figure 1 (2009). Nonetheless, PDPs 
can also vary dynamically so that sophisticated techniques 
for minimizing the defaults risk and improving sales have to 
be applied. Krubasik (1998) argues that not all product devel-
opment is similar. In this topic, Zamenopoulos and Alexiou 
(2007) propose a clever spiral form of PDP staged process 
which requires managers to evaluate risk before starting a 
new step of the process. A version of the spiral PDP intro-
duced by Barry Boehm (1986) is illustrated in Figure 2. Note 
that this version is similar but more detailed than the Xerox 
copier/printer software presented in Unger and Eppinger 
(2009). It clearly shows that feedback-based design is still 
possible for reaching managing objectives.

A PDP planning project involves the completion of hun-
dreds or even thousands parts or entities not simply coordi-
nated or structurally well-linked.

PDP projects are very complex and especially dynamic. 
Besides, different disciplines and domains can influence the 
behavior of a product design or a project, therefore, manag-
ers and engineers must understand how they interrelate with 
and influence each other. Danilovic and Brownig (2004) give 
an overview of the environment that interacts with PDP. 

FIGURE 1. A Software PDP Lifecycle planning FIGURE 2. Boehm General Spiral Process (Software Product) [from 
http://commons.wikimedia.org/wiki]
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Product specifications are a consequence of customer 
requirements, and many other events that contribute to the 
success or failure of a project. Figure 3 illustrates the four 
domains defined in a PDP process. They are part of the axio-
matic design methodology and work such that for each pair 
of adjacent domains, the left domain represents “what we 
want to achieve” while the right one represents the design 
solution of “how we propose to achieve it”. The four domains 
are:

Customer The benefits customers seek.

Functional Functional requirements of the design solution

Physical Design parameters of the design solution

Process Process variables

 
Danilovic and Browning (2004) precise that this process 

is like a web such that domains are interrelated and informa-
tion is flowing back and forth between them. 

Many attempts have been applied to use different par-
adigms to represent the structure of a PDP components in 
order to reduce as much as possible the relationship between 
them. One of those solutions is attributed to Steward (1981) 
who introduced the Design Structure Matrix (DSM) which is 
also known as the dependency structure matrix. An alter-
native representation of the PDP uses the axiomatic design 
principles, which according to Suh (1990), offers a systematic 
approach to product design and production planning.

This paper presents two complimentary integrated tools 
named DSM and ADT as a part of the decomposition–in-
tegration problem in product design development process, 
where the latter is more concerned with mapping customer’s 
needs from functional requirements to design parameters, 
while the former is better suited for modelling the interac-
tions and the design parameters integration. The main ob-
jective of this work concerns first the decomposition process 
as a part of concurrent engineering techniques. The follow-
ing section presents a brief summary of concurrency and 

decomposition. Section 3 details DSM tools and algorithms. 
ADT methodology is then highlighted in Section 4, while 
Section 5 shows that the combination of DSM and ADT will 
generate a more complete tool for designing and organiz-
ing the design process of products. Finally, conclusions are 
drawn and future work outlined.

2. Concurrency and PDP Decomposition
The process of developing new products consumes time, 

money and human resources, and it is a hard task. The cost 
of a product development is proportional to the project’s 
resources (people, machinery, materials) and duration. 
When performed sequentially, the effort that is developed in 
the project often ends up accumulating rework and increas-
ing different types of risks. Of course, this way of working 
also has impacts on the composition of project costs. In 
order to minimize the duration of the product development, 
solutions such as concurrent engineering (CE) for products, 
and concurrent construction (CC) in civil engineering and 
architecture have been widely used in many projects. 

Sequential engineering (SE) considers that a project is 
composed by tasks that are executed one after another, 
and the only constraint that binds them is the precedence 
information relationship (exchanges). Three types of rela-
tionships have been reported by Ulrich and Eppinger (2004): 
independent, dependant and interdependent. They are also 
named, “serial”, “parallel” and “coupled” (see Figure 6). One 
obvious thought is that, if PDP process consists of inde-
pendent tasks, fewer problems may arise by concurrently 
executing these tasks and the problem becomes manageable. 
According to Yassine and Braha (2003) the CE principles 
are: iteration, parallelism, decomposition and stability. The 
advantage of decomposing a PDP design is that it reduces 
the complexity of the design process (1993).  

The main principle of decomposing a product design 
process is to break it into groups of activities (subprocess) 
while detecting potential activities that could be worked 
simultaneously (interleaving parallelism) or in parallel (free 
parallelism). Pimmler and Eppinger argue (1994) that the 
device’s function is decomposed into multiple sub-functions 
allowing the team to find solutions for each of the small-
est pieces of the design. They propose a three-step method 
which works as follows: 1 - decomposition of the system 
into elements; 2 - documentation of the interaction between 
elements, and clustering the elements into architectural and 
team chunks. The literature on decomposition process has 
not reflected the importance of this problem yet, and it is 
not very extensive except in software engineering systems. 
Research concerning PDP decomposition started with the 
work of Alexander (1964), in which it was proposed a PDP 
process that decomposes designs into minimally coupled 
groups. Simon (1981) suggested that complex designs can be 

FIGURE 3. Domains concept in a PDP process

organized using hierarchical struc-
tures consisting of nearly decomposed 
systems. Johnson and Benson (1984) 
developed a two-stage decomposition 
strategy for design optimization. The 
strategy is restrictive by considering 
that sub-processes are independent. 
Azarm (1987) applied decomposition 
to problem solving using the concept 
of monotonicity. Rogers (1989) incor-
porated the decomposition principle 
when conducting research at NASA. 

As PDP process may involve 
coordination of many activities and 
procedures, problems may arise when 
describing interactions between the 
generated sub-parts. Many solutions 
have been proposed in order to over-
come such problem. Warfill and Hill 
(1972) discuss about this issue and 
suggest that the solution of complex 
designs lies in understanding and con-
trolling the interactions between the 
elements. Galbraith (1973) proposed a 
clear distinction between the organ-
ization structure and the problem to 

A B C D E F G H

1 X X X

2 X X X

3 X X

4 X X

5 X X

6 X X X

7 X X X

A B C D E F G H

1 X X X X X

2 X X X X X

3 X X X X X

4 X X X X X

5 X X X X X

6 X X X X X

7 X X X X X

A B C D E F G H

1 X X X

2 X X X

3 X X X

4 X X X

5 X X X

6 X X X X X X X X

7 X X X X X X X X

FIGURE 4. Three types of matrices:  (1st decom-
posable, 2nd non-decomposable with overlap-
ping parameters, 3rd non-decomposable with 
overlapping activities).

be solved. Later, Ulrich and Eppinger 
(2004) proposed a solution related to 
the interactions between decomposed 
parts of a system so that they can be 
considered after the architecture is 
defined. 

Two well-known tools could be 
used to represent the information 
execution of a PDP (project), and they 
are matrices and graphs. Why matrices 
and graphs? The answer is simple-- 
they are natural, visual and could be 
easily used to represent our thoughts, 
and are mathematically well-founded. 
For instance, matrix representing a 
PDP task and its relationships can be 
categorized as decomposed in such 
a way that rows and columns can be 
grouped in a form that the matrix can 
be separated into mutually exclusive 
sub-matrices as shown in Figure 4 (first 
matrix. An entry “X”  in this matrix 
denotes that parameter j (j = A, B, C, …, 
H) appears in activity i (i =1,…, 7)). 

The matrices exhibited in Figure 4 
show three characteristic patterns. 
The first one presents a simple config-
uration which clearly highlights three 
independent subsystems. Moreover, if 
one draws the graph three sub-graphs 
can be seen without any interaction 
with each other (connected components 
as defined in graphs theory). The others 
are more difficult to be distinguished 
as activities and parameters are over-
lapped. A good solution is precisely 
to minimize as much as possible the 
overlapping. 

To deal with the overlapping ac-
tivities, Kusiak (1993) proposed four 
actions which are: 1 - replacing an 
overlapping activity with an alternative 
activity that involves different param-
eters; 2 - decomposition of an activity 
into sub-activities; 3 - removing an 
overlapping activity whenever is possi-
ble, and 4 - the duration of an overlap-
ping activity can be shortened.

Kusiac et al. (1993) proposed two 
interesting algorithms; they are called 
Cluster Identification (CI) and Branch-
and-Bound Algorithms. The CI algo-
rithm proceeds as follows:

Cluster-Identification- 
Algorithm.
Inputs:
•  Incidence matrix as showed in Figure 5 (first 
matrix).

•  Two Boolean vectors V-rows and V-columns 
are declared (they will memorize the marking).

Step 0.  Set iteration k = 1.

Step 1. Select row I of the incidence matrix and 
mark and put “1” in the position I of V-rows.

Step 2. For each entry of “X” crossed by 
the horizontal line (“1” in V-rows) put “1” in 
V-columns.

Step 3. For each entry of “X” crossed by 
the vertical line (“1” in V-columns) put “1” in 
V-columns.

Step 4. Repeat step 2 and step 3 until there are 
no more crossed-ones of “X” in the matrix.

Step 5. Transform the initial incidence matrix 
into another one by removing rows and 
columns marked in V-rows and V-columns.

Step 6. If the last matrix is empty, stop, 
otherwise increment k and go to step 1. 

A B C D E F G H

1 X X X

2 X X

3 X X

4 X X

5 X X

6 X

7 X X X X

B C E H A F D G

1 X X X

5 X X X

7 X X X X

2 X X

4 X X

3 X X

6 X

FIGURE 5. (1st) example of a design matrix, (2nd) 
resulting matrix after clustering algorithm 
application.

3. Design Structure Matrix
The design structure matrix (DSM) 

also known as dependency structure 
matrix and its manipulating algo-

Concept	  design	  phase	  

Concept	  design	  phase	  

Concept	  design	  phase	  

Process	  

Variables	  Design	  
Parameters	  Func8onal	  

Requirements	  Customer	  

Heads	  

Customer	  domain	  

Func8onal	  domain	  
Physical	  domain	  

Process	  domain	  
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rithms, was originally developed by 
Steward (1981) to analyse information 
flow. DSM has been widely used in 
managing complex projects in various 
field of study such as building construc-
tion, semiconductor, automotive, aero-
space, telecom, manufacturing, factory 
equipment, and so on. The DSM is a 
useful tool for optimizing the compo-
nents composition of product develop-
ment in terms of minimizing interfaces. 
It has the ability to analyse functions, 
facilitate the tracking of components 
in a new design, decompose a system 
into elements, integrate elements into 
modules or subsystems and can, for 
example, perform an optimal sequenc-
ing of tasks that need to be performed 
as part of a product development effort 
(Fernandez, 1996). Concretely, DSM is 
just a matrix structure which does not 
express all the relevant information 
required for defining logic process, but 
it is a general method for representing 
and analyzing system models to better 
plan complex projects involving inter-
dependencies, facilitating modularity, 
sequencing to minimize cost and sched-
ule risk in a variety of application areas. 
DSM representation evolved later to 
Domain Mapping Matrices (Danilovic & 
Browning, 2004) and Multiple-Domain 
Matrices (Gebala & Eppinger, 1991). 
The DSM-based project plan can be 
converted to a graph-based model or a 
graphical evaluation and review tech-
nique (graphical PERT) for representing 
the static process structure and the 
dynamic progress logic and calculus. 
Figure 8 shows some types of activity re-
lations in DSM and their corresponding 
representations in a graph represented 
in Figure 7. A DSM can be modeled by 
an incidence matrix as defined in graph 

theory. In the DSM, like a project task 
or a system component, the relation-
ships between activities are represented 
by marking the cell formed by rows 
and the corresponding columns. For 
example, if there is an arrow from Node 
A to Node B, then a ‘X’ mark is placed 
in the intersection cell of Row A  and 
Column B.  This means that activity B 
follows activity A. Diagonal elements 
have no significance and are normal-
ly blacked-out (see Figure 8). A design 
process is composed of three types of 
basic behavioral patterns, namely serial 
(dependent or decoupled), parallel (in-
dependent or uncoupled), and iterative 
(interdependent or coupled) ones. Figure 
6 gives a graphical representation of 
these 3 types of design.

The DSM is most useful when 
activities are listed in the order of their 
execution in the project. Changing the 
order of activities is called partitioning 
and a partitioned DSM shows which 
tasks are parallels, series or coupled. 
The problem of DSM model is its static 
representation of activities and the lack 
in exhibiting the timing requirements 
of tasks as project duration enriches 
a DSM model such as, for example, to 
apply simple heuristics directly on the 
activities graph such as to evaluate the 
minimal and maximal duration of a 
project. We can remark that the project 
information cannot be used directly 
from the DSM unless we use some algo-
rithms to manipulate them. 

According to the mathematical side 
of DSM interpretation, a DSM associat-
ed with a graph is a binary square ma-
trix with m rows and m columns, and 
the number of marked cells corresponds 
to the links between nodes which are 
admitted equal to n. The easiest way 

to model a directed graph in terms of 
DSM is to use a binary matrix so that 
the DSM can be defined as follows:

Definition 1. The DSM is a Boolean 
matrix A = [aij]n×n composed of elements 
such as each element is defined accord-
ing to (1).

aij =
1 if (aj → ai )

otherwise
⎧
⎨
⎩      

(1)

where a link (aj → ai ) between aj and 
ai denotes that component aj transfers 
information to component ai so that the 
execution of ai cannot be proceeded if 
aj did not complete its execution. The 
diagonal cells are blackened. An empty 
row represents a source node and an 
empty column represents a terminal 
node.

Figure 8 presents the DSM corre-
spondent to the graph in Figure 7. The 
product consists of 12 subsystems labe-
led Modules A, B, C,…, L. 

Note that once the design process 
has been mapped into a DSM, two 
specific algorithms are applied. The first 
one concerns the partitioning which 
consists of re-sequencing the design 
activities to maximize the coordination 
between them and to detail the circu-
lar path supporting the information 
exchange. The algorithm identifies the 
activities in the loop and clusters them 
as a block on the diagonal of the design 
matrix (Gebala & Eppinger, 1991)º. The 
second algorithm (tearing) is to re-se-
quence within the blocks of coupled 
activities to find an initial ordering to 
start the iteration which consists in 
the removal of dependency between 
coupled tasks.

(a) Serial                    (b)  Parallel                 (c) Coupled
A B A B A B

A A A X

B X B B X

FIGURE 6. Activity Networks and DSM equivalence FIGURE 7. Any relationship graph

A B C D E F G H I J K L

A 1

B

C 1

D 1 1 1 1

E 1 1 1

F 1 1

G 1 1

H 1 1 1

I 1 1 1

J 1 1 1 1

K 1 1

L 1 1 1 1

FIGURE 8. DSM corresponding to the graph  
in the Figure 7.

3.1  Partitioning a DSM

Partitioning is a special operation that re-orders and re-groups the DSM rows 
and columns such that the new DSM arrangement does not contain any feedback 
marks. For complex engineering systems, partitioning algorithms try to move 
feedback marks as close as possible to the diagonal creating blocks. Collapsing 
these blocks into single task simplify the form of the matrix and thus those of the 
project. 

There are several heuristics used in DSM partitioning. However, they are 
all similar, with a difference in how they identify information cycles (loops or 
circuits). The main objective of such heuristics is attempting to find a sequence of 
the design activities which allows the DSM matrix to become lower triangular. If 
the activity tasks can be sequenced so that each one begins only after it receives 
all the information it requires from its predecessors, then no coupling remains in 
the design problem. 

The following algorithms (see the three boxes below) decompose a design ma-
trix if possible. 

The grouping of components into a class or a group of components can be 
understood as the creation of a module composed by the merging of these compo-
nents. Algorithm 3 consists of identifying loops (blocks) of information by powers 
the adjacency Matrix.

A B C D E F G H

A 1 1

B 1 1

C 1

D 1 1

E 1 1 1

F 1 1

G 1 1

H 1 1

FIGURE 9. Sample DSM.

A H F D E C G B

A 1 1

H 1 1

F 1 1

D 1 1

E 1 1 1

C 1

G 1 1

B 1 1

FIGURE 10. Partitioned DSM of figure 11 
(first step).

A-H-F-D E-C-G-B

A-H-F-D 1

E-C-G-B 1

FIGURE 11. Reduced DSM (final step).

Example 1 – Application of Algorithm 1f Algorithm 1 (Partitioning) 

1. Identify components without input 

from the rest of the elements in the matrix 

(source nodes). Those elements can easily 

be identified by observing an empty column 

in the DSM. Place those elements to the left 

of the DSM. If there is more than one source 

node, put them according to their position 

in the initial matrix. Once an element is 

rearranged, it is removed from the DSM (with 

all its corresponding marks) and step 1 is 

repeated on the remaining elements.

2. Identify the components that deliver no 

information to other elements in the matrix 

(target nodes). Those elements can easily 

be identified by observing an empty row in 

the DSM. Place those elements to the right 

of the DSM. Once an element is rearranged, 

it is removed from the DSM (with all its 

corresponding marks) and step 2 is repeated 

on the remaining elements.

3. If after steps 1 and 2 there are no 

remaining elements in the DSM, then the 

matrix is completely partitioned; otherwise, 

the remaining elements contain information 

circuits (at least one).

4. Determine the circuits using any method. 

5. Collapse the elements involved in a single 

circuit into one representative element and 

go to step 1.

f Algorithm 2 (Partitioning) 

Input: DSM matrix;

S.Modules = null;

Let n be its dimension

Identify components without inputs and 
put them in a queue list;

Start node v (the last one in the queue)

index = 0 /* nodes number counter */

Stack = empty /* empty stack of nodes */

forall v in DSM

  if (v is an unvisited node

    call depth_1st_search(v) 

until (u == v)

end.

procedure depth_1st_search(v)
 index (v) = index 

 lowlink(v) = index

 index = index + 1

 push(v) /* Push v on the stack */

 L = Children(v) /* node v successors */ 

 forall (v, u) in L 

  if u not visited yet? 

   depth_1st_search(u)

   lowlink(v)= min(lowlink(v), lowlink(v)

  elseif (u in Stack)?

    lowlink(v) = min(lowlink(v), u.index(u))

  if (lowlink(v) == index(v)? 

    Copy Stack in  S.Modules

    repeat

      u = Stack.pop

 end

A

B

C

D

E

F

G

H

I

J

K
L
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3.2  Tearing a DSM

Once the blocks are identified and 
placed into a block-triangular form, the 
activities have to be sequenced within 
the blocks by removing the dependency 
relationship temporarily. As the last 
decision of which task must be discard-
ed is up to the manager’s judgement, 
the result of tearing will be highly sen-
sitive from one person to another.  To 
obtain more information and a detailed 
description of the tearing process, we 
strongly encourage the reader to read 
the work of Browning and Eppinger 
(2002).

A B C D E F G H I

A

B 1 1

C 1 1

D 1 1

E 1 1

F 1 1

G 1

H 1 1

I 1

FIGURE 12. Graph corresponding to DSM of 
figure 13.

A E F I C B G H D

A

E 1 1

F 1 1

I 1

C 1 1

B 1 1

G 1

H 1 1

D 1 1

FIGURE 13. Partitioned DSM obtained with 
algorithm 2.

Example 2 – Application of Algorithm 2

A B C D E F G

A 1 1

B 1

C 1 1 1 1

D 1

E 1 1

F

G 1 1

1. Select tasks free of input and output links (E 
and F are such tasks), we get:

A B C D E F G
A 1 1
B 1
C 1 1 1 1
D 1
E 1 1
F
G 1 1

2. Remove rows and columns relatives to E 
and F. 

A B C D G
A 1 1
B 1
C 1 1 1
D 1
G 1

3. Matrix product: Power 2.

f Algorithm 3. 

1. Exclude from the DSM every row and 
every column because they does not require 
information from other tasks and provide 
no information to the other tasks.

2. Multiply the matrix by itself to determine 
loops.

3. Stop when reaching the higher power.

Example 3 – Application of Algorithm 3

A B C D G
A 1 1 1
B 1
C 1 1 1
D 1
G 1

4. Matrix product: Power 3.

A B C D G
A 1 1 1
B 1
C 1 1 1 1
D 1
G 1

5. Matrix product: Power 4.

A B C D G
A 1 1 1 1
B 1
C 1 1 1 1
D 1
G 1

6. Matrix product: Power 5.

A B C D G
A 1 1 1 1
B 1
C 1 1 1 1
D 1
G 1

7. Task E and Task F are re-introduced in the final 
matrix, F as the first column and E as the last 
row. Task A and Task C have just one entries so 
they are pushed to the last just before E, and 
then followed by D with has two entries. 

At last, the final matrix is: 

F B D G C A E
F
B 1
D 1
G 1 1
C 1 1 1 1
A 1 1
E 1 1

3.3 Illustrative examples from the Literature

3.3.1 A case study 1 – Power Line Communication Kit (Reused from [31])

FIGURE 14. Case study of an existing Power line Communication (PLC) product.  
(Source: Luh et al., page 15,  ref. [31]).

FIGURE 15. PLC product and its DSM (initial matrix).

FIGURE 16. Matrix result after clustering.

FIGURE 17. Hierarchical of component interaction.

3.3.2 A case study 2 – (Source: [36])

N0. Part Name

X
1 the operating structure design

X
4 vessel design

X
4 plant layout/general arrangement (GA)

X
4 shipping design

X
6 structure lifting design

X
6 pressure drop analysis

X
8 process engineering

X
8 structural documentation

X
9 size valves

X
11 wind load design

X
11 seismic design

X
14 piping design

X
14 process and instrumentation diagram (PandID)

X
14 equipment support

X
17 pipe flexibility analysis

X
17 design documentation

X
17 foundation load design

X
19 insulation structural design

X
19 structural bill of materials (BOM)

X
20 assembly design

FIGURE 18. Initial design Table, non-partitioned (first matrix), 
and Partitioned (second matrix).

4. Axiomatic Design Theory
    Axiomatic design is a systems design methodology de-

veloped by Dr. Suh at MIT (1990, 2005, 1999) in the Depart-
ment of Mechanical Engineering in the 90s. This method 
consists of using matrix methods to systematically analyze 
the transformation of customer needs into functional re-
quirements, design parameters, and process variables.

    Axiomatic design provides a systematic way of sat-
isfying many functional requirements (FRs) at the same 
time without introducing coupling of functions and cre-
ating integrated physical systems. ADT provides means 
of decomposing top-level requirements (FRs) and design 
parameters (DPs) until the creation of leaf-level FRs and DPs 
that can be implemented to construct the system according 
to the resulting design decision architecture. Let FRs a set 
of function requirement and DPs its corresponding referred 
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design parameters be selected by the project team through 
the development of different solutions so that each DPs is 
related to a corresponding FR, and related such that a spe-
cific DP can be adjusted to satisfy its FR. The design process 
is composed by four domains as illustrated in Figure 19 and 
partially shown in Figure 3, namely: 1 - customer domain, 
functional domain, physical domain and process domain. 
The role of each domain is detailed in (Suh, 2005, 1999).

FIGURE 19. The foundation axioms used in Axiomatic Design Theory are:

Axiom 1: Maintain the independence of the functional requirements 
(FRs).

Axiom 2: Minimize the information content of the design such 
that as defined by equation (2). The formal definition of information 
content for a particular design parameter is:

Design range: the tolerance of the admissible variation of DPs.

System range: The capability of the system.

Common range: The overlap between design and system ranges.

P
i
 : Probability of satisfying (See Figure 20).

To compare two different designs based on their in-
formation content, it is necessary to compare the sums of 
information contents of each design. For further details, the 
reader is invited to read Suh (2005).

Axiom 1 requires that functional requirements be 
independent of each other, enabling each FR to be satisfied 
without affecting any other FR.

Axiom 2 provides a quantitative measurement of any 
design. It is useful in selecting the best design which satisfy 
Axiom 1.

    Furthermore, in ADT there are some theorem and 
corollary to organize the logic side of the process. They are 
considered as rules for adopting a sense of interpretation. 
For example, Corollary 3 says: “Integrate design features 
into a single physical part if the functional requirements 
can be independently satisfied in the proposed solution” 

and Theorem 5, “When a given set of FRs is changed by the 
addition of a new FR, by substituting one of the FRs with a 
new one, or by selection of a completely different set of FRs, 
the design solution given by the original DPs cannot satisfy 
the new set of FRs any longer. Consequently, a new design 
solution must be sought”.

    A typical Design model using the ADT is presented as 
follows (Nam, 2001) (At the high level):

FR1= Satisfy specific customer requirements
FR2 = Produce economically
FR3 = Deliver fast
DP1 = Product variety
DP2 = Position of the decoupling point
DP3 = Production flow.
    In ADT methodology, the decomposition process 

starts with the decomposition of the overall functional 
requirement and its corresponding DP is determined for the 
same hierarchical level in the physical domain. The iterative 
process is called zigzagging and at each level of the hierarchy 
the FRs and DPs can be mapped to each other according to 
the equation (3). Figure 21.

The design matrix DM can be expressed as (4).

where  

A small change in any parameter may cause a deviation 
in the functional requirement.

In linear design Aij are constants. The obtained expres-
sion is 

As equation 2 satisfies the Axiom 1 of the ADT, it can be 
interpreted as “choosing the DPs set which satisfies a given 
set of FRs”. Equation (3) shows that each element of the DM 

I = log (2)= log
1
Pi

system range
common range

{FR} = [DM]{DP} (3)

(5)

FIGURE 20. The relationship among design range, the common range, 
the system range and probability distribution (from [25]).

FIGURE 21. Hierarchical decomposition in ADT process.

(4)[DM] =
A11

Am1 Amn

A1n

Aij = δFRi   (i= 1, ..., m and j = 1, ..., n)
δDPi

ΔFRi = δFRi  ΔDPi

δDPi

(6)

FRi = ∑ Aij DPj

n

i=1
(7)

depend on any particular design parameter. In addition, as 
discussed previously in DSM paragraph, the three types 
of designs may exist (uncoupled, decoupled and coupled) 
in the sense that uncoupled design occurs when each FR 
is satisfied by exactly one DP, and the resulting matrix is 
diagonal. When it is possible to organize DM matrix as a 
lower triangular, the design is decoupled, and therefore, 
the FRs can be satisfied. The third case shows that FRs 
cannot be satisfied independently, exactly as shown in 
Figure 6. Moreover, it can be noticed that decoupled design 
has less tolerance than uncoupled design, and the increase 
of the order of design makes the last DP’s tolerance small-
er. If the number of DPs is greater than the number of FRs 
then the design is redundant (Nordlund, 1996).

4.1 Example. Architecture for a Glass-Bulb Design 
(Source:  http://www.axiomaticdesign.com).

    The glass bulb is a unit element of a TV tube, which 
is sometimes called “Brown tube.” The tube consists of a 
shadow mask, an electron gun, a band, and a glass-bulb 
that consists of a panel and a funnel. The panel is the front 
part and the funnel is the rear part of the glass bulb shown 
in Figure 22.

The original manual design process consisted of the 
following 5 steps. 

Step 1. Product requisition which consists in receiving a customer 
order containing the basic design specifications.

Step 2. Generation of an initial design using a CAD software. 

Step 3. Generation of the tube three-dimensional shape using a 
software program, which uses the output of Steps 1 and 2 as well as 
part of the information generated in Step 5, and then perform Step 4. 

Step 4. Stress analysis.

Step 5. Generation of final design. Some part of this information is 
used in Steps 3 and 4, requiring iterations between Steps 2 through 5.

The functional requirements of this design are at each 
level of the process and are presented in the Table 1.

The hierarchy and the zigzagging processes are de-
tailed in the Figure 23.

FR
i
/DP

i DENOMINATION
FR

1 Construct the basic information of the product

FR
11 Assign an ID number to a new product

FR
12 Construct a set of data for a new product

FR
2 Establish the product shape, produce economically

FR
21 Check the curvature, panel flatness, and funnel axis profile

FR
22 Calculate the three-dimensional shape

FR
23 Consider the manufacturability

FR
3 Verify the mechanical characteristics of the product

FR
4 Generate the product drawing

FR
41 Represent the shape of the product

FR
42 Display accessory of the drawing

FR
231 Check the useful screen dimension for the panel

FR
232 Evaluate the ejectability

FR
233 Examine the deflection angle of a scanning line for the funnel

DP
1 A set of basic data - those supplied by the customer

DP
11 Representative code of new product

DP
12 A set of specific data for a new product

DP
2 The three-dimensional shape structure (panel/funnel)

DP
21 Inside/outside curvature for the product

DP
22 Characteristic geometric equation for the product

DP
23 A set of data for mold manufacture

DP
231 Distance of blending circle center position

DP
232 Angle of the side wall

DP
233 Inside curvature of the yoke part

DP
3 Loading conditions on the panel and funnel

DP
4 A set of accessory drawing data

DP
41 A set of data for product design

DP
42 A set of data for accessory

TABLE 1. Functional and design product for the ADT (Source: http://
www.axiomaticdesign.com/technology/ADSChapter5.html

FIGURE 23. Hierarchical and zigzagging topology.

matrix is represented as a partial derivative to indicate the 
strong dependency between FRs and DPs. The derivative 
values can be “0” or any other value. Using a derivative value 
of “0” means to say that the functional requirement does not 

FIGURE 22.  
Example of a 
glass-bulb
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The hierarchical relationships between 
functional and physical domains depicted 
in Table 1 are presented in the following 
matrices illustrated in Figure 24.

FIGURE 24. (High-level coupled design, (b) 
high-level decoupled design, (c) triangular matrix, 
it is a decoupled design, (d) decoupled design, (c) 
diagonal matrix, uncoupled design, (f) uncoupled 
design.

5. Integrating ADT and DSM
As ADT is firstly used in the product 

creation stage, it is incapable of analysing the 
system’s interactions. This mission is treated 
efficiently by the DSM, however, the DSM can-
not address descriptive facilities at the stage 
of design creation. Therefore, it is logical to 
believe that their combination will generate a 
more robust tool for designing and organizing 
product design process. Many attempts have 
been made in order to address this process 
(Axiomatic design of mechanical systems, 
1995) and (Maurer, 2007) the objective was to 
obtain the design information flow at an early 
stage of the design, and thus allowing the use 
of the DSM at the time when the most impor-
tant decisions about the system and design are 
made. The procedure for doing this could be as 
proposed by (Maurer, 2007): (1) using existing 
DSM-based knowledge to accelerate AD; (2) 
conversion of DM to DSM to get the inter-
actions among DPs at the conceptual design 
stage; (3) using derived DSM to evaluate the 
design result of AD from the DPs interaction 
view; and (4) using derived DSM to conduct 
project planning at an early design stage. 

Dong and Whitney (2001) showed that if 
the AD matrix can be expressed analytically 
and one design parameter (DP) is dominant 
in satisfying a particular functional require-
ment (FR), then the triangulated design ma-
trix is equivalent to the DSM of the design 
parameters. The algorithm proceeds in three 
major steps:
1. Construct the Design Matrix (DM).
2. In each row of the DM choose the dominant 
entry.
3. Permute the matrix by exchanging rows and 
columns so that all dominant entries appear on 
the main diagonal.

To demonstrate the transition from an 
ADT to its corresponding DSM, we use a 
simple example that can be summarized 
according to the procedure of Dong and 
Whitney (2001).

We assume the functional requirements 
at the highest level are available.
Step 1. Construct the design matrix (ADT).

DP1 DP2 DP3
FR1 X X
FR2 X X
FR3 X X

Step 2. Choose an output variable from each 
row. They are indicated by X0.

DP1 DP2 DP3

FR1 X X0

FR2 X0 X

FR3 X0 X

.The significance of the output variable choice 
is:

DP3 = f (FR1, DP1)
DP1 = f (FR2, DP2)
DP2 = f (FR3, DP3)

Step 3. Permute the rows so that the output 
variables are on the diagonal. Then rename the 
rows according to the DP of the columns, we get 
the DSM:

DP1 DP2 DP3
DP1 X0 X
DP2 X0
DP3 X X0

6. Conclusions
Product design process is a very complex 

task to accomplish as the number of activi-
ties and their interaction increases. De-
composition and partitioning may involves 
preliminary solutions but not sufficient to 
contribute to facilitate the description of the 
global design process, sharing the project 
between team component, and incorporat-
ing time, cost and risk requirements. DSM 
and ADT are two compact representations 
of the design process architecture infor-
mation structure, and from which it can be 
possible to monitor the design process from 

the beginning to the end. DSM and ADT 
are able to work independently from one 
another, however, they are surprisingly more 
effective when used together. 

In this paper a design decomposition 
model is proposed in which Axiomatic 
Design Matrices (ADT) map the functional 
requirements to design parameters, while 
the Design Structure Matrices (DSM) 
provide a structured representation of the 
system development context. The process 
of decomposition and integration using 
matrices as information support is easier 
when using simple algorithms and heuris-
tics presented in the paper. Furthermore, 
transition from one model (DSM) to another 
(ADT) was clearly identified through the use 
of several examples. In the near future, this 
work will include an evaluation and study 
on advanced algorithms for enhancing and 
clarifying sequence-coupled tasks based on 
ADT and DSM tools to lightening up PDP’s 
processes.
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