
TOWARDS
AGILE APROACH
FOR BETTER
USER SATISFACTION

r Nizar Al Hawajreh
Master degree student at
the Computer Science and
Engineering department
of Qatar University

r Ashraf Abualia

r Hanadi Al-Thani

r Zohreh Fouroozesh

r Kholoud Khalil

r Kholoud Mohammed

r Muna Al Kuwari

r Alanood Zainal

r Abdelaziz Bouras, Ph.D.
ictQATAR Chair Professor
at Qatar University

abdelaziz.bouras@qu.edu.qa

Computer Science Department, College
of Engineering, Qatar University
Doha, Qatar

P.O Box 2713

KEYWORDS f user satisfaction f user expectation f testing f agile approach f scrum f iteration
planning

r A B S T R A C T

User satisfaction is a cornerstone indicator of any successful software project. Software projects are classified as

successful only if the users are satisfied with the delivered software project result. Reducing the gap between users’

expectations and the actual delivered software is one of the ultimate objectives of software project management.

Therefore, it is essential to manage user expectations during the project, which is basically achieved by managing the

user opinions related to the final performance of the software. However, this cannot be isolated from the adopted

testing methodology, which is the way to guarantee the optimal user satisfaction. Furthermore, the stakeholder

occupies a significant position in agile principles aligned with development teams. Flexibility to adapt stakeholders’

late changes is also another gain in agility. Agility additionally focuses on the decentralized management approach

to exploit any managing skills of the software project individuals. In this paper, we describe how these factors are

relevant to the agile project management strategy. Our findings explain the hidden reasons behind the success of the

agile strategy in software development projects.

CASE STUDY

INTRODUCTION

Several factors influence the success or failure
of large software projects. Among these factors,
user satisfaction can directly define the real
success or failure of any project. In general, large
projects have many tasks and phases that are
required to be assembled together in order to de-
liver the project’s objectives. In terms of executing
software projects, more precise planning, in-
depth analysis and design are needed which make
the task of managing large projects more chal-
lenging. This is mainly the result of more required
resources, time, and cost, and the plan is very
complicated and might suffer imprecise blueprint.
Adding to that, such projects have higher risk
of failure because of the difficulty in controlling
their long phases and deliverables.

Managing user expectations is one of the
major tasks in software projects [19]. However,
managing this task is considered challenging
since it is not affiliated to a single phase of the
project, instead, it must be carried out during the
whole project. Based on that, we can confidently
mention that it is extremely important to properly
manage the user expectations in order to control
the catastrophic consequences of increasing the
gap between the delivered software and the user
expectations. These facts leave few options other
than building a user-oriented plan where the
user is the key factor of the project success. This
approach is eventually built on top of three main
strategies that complement each other and lead
to a successful management of the user expec-
tations. These strategies are user involvement,
leadership and trust. For example, the practical
implementation of these three strategies is clearly
considered in the testing phase, which should be
carefully designed to cope with the decentralized
and user-oriented approach of the project. It is
very essential to develop a compatible testing plan
to achieve the best satisfaction. The main purpose
of the testing phase is to assure achieving users
requirements, in addition to checking the correct-
ness of the implemented functions and identify-
ing any partial or complete failure which can be
achieved through the early detection of bugs and
errors.

Testing is usually laborious and detailed
work. For example, testing a website requires a
complete check of all links every time a change
is performed in the website. From this point,
creating templates, standards and documenta-
tions is a real time-saver. Unfortunately, testing is

normally the phase that gets shortened if a project
is late. When a task is delayed and is consuming
more time than what was anticipated; the testing
phase is compressed. However, it is crystal clear
that compressing the testing phase leads to late
prediction of bugs and eventually unsatisfied
user. Late prediction also increases the cost of
fixing bugs. Thus it is better to concurrently carry
out testing after each phase to overcome these
limitations.

The project lifecycle can be designed based
on different development process models such as
waterfall, spiral, incremental and iterative models.
Waterfall and spiral approaches share one major
limitation, where both of them require an exact
comprehensive plan to reflect all stakeholder
expectations. The stakeholder is unable to see
the real software deliverables before the com-
pletion of development process which results in
late changes in the project requirements. These
changes may dramatically require a complete
redesigning and reimplementation for multiple
software deliverables. Moreover, in these ap-
proaches one project manager should be assigned
to manage excessive number of tasks because
of the centralized management approach. On
the other hand, the incremental development
approach divides the project into smaller incre-
ments that are easier to manage. During that
time, stakeholder involvements become more
frequent. This is actually to fill in the gap between
the user expectations and how the project team
understands the user requirements. However,
this approach lacks a clear vision to leadership
concepts. In contrast, the agile approach – one of
iterative software development styles – is cus-
tomer value oriented. Because of leadership and
decentralized approach, project manager re-
sponsibilities are significantly reduced and some
classical project manager roles are transferred to
development teams. In agile, development team
individuals have the ability to make decisions
in their domains. Moreover, agile approach is
designed to smoothly accept late changes which
can save many efforts. This approach focuses on
managing user expectations and the risk behind
it. We show that testing is a very dependent phase
to ensure the successful implementation of user
expectations within a project lifecycle.

The paper is organized as follows. In section
1 we discuss user expectations. Testing will be
presented in section 2. Section 3 presents an
overview about classical development approaches.

MAY-AUGUST 2014 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 51

The agile model is illustrated in section 4. Section 5 states
the iteration planning. In section 6 a case study is addressed.
Finally discussion and conclusion are demonstrated in sec-
tions 7 and 8 respectively.

1.	 User Expectations
Project management is summarized as shown in Figure

1 [10] into a diamond model. The diamond consists of time,
cost, quality, scope and user expectations in the middle. To
manage a software project these factors should be con-
trolled. Addressing these constraints properly leads to a
satisfactory deliverable software project. Where a successful
project relies on user satisfaction [17].

User satisfaction depends on service quality and product
quality [9]. Service quality is a comparison between the user
expectations and the perceptions of the service [1]. Whereas,
product quality measures how the delivered system meets
the requirements and satisfies the user during the product
life cycle. Users evaluate service quality by evaluating both
technical and functional quality. The technical quality is the
quality of the delivered software such as performance, disas-
ter recovery, high availability or response time. On the other
hand, functional quality is the user interaction with the
process of producing the outcome [2] that involves people,
infrastructure and processes. Evaluation of product quality
is based on defining external and internal system product at-
tributes. External attributes involve the system functionality
such as speed and safety and internal attributes involve the
software projects architectural structure [7].

User expectations in a software project can be defined
as “a set of beliefs held by the targeted users of a system
associated with the eventual performance using the system”
[15]. Software development projects are associated with high
failure rates. The users are not satisfied if the delivered soft-
ware project does not meet their expectations. Therefore,

bassisting users in generating their expectations, the failure
rate can be decreased.

One of the studies related to user expectations is service
quality where software project managers should ensure that
the user develops a reasonable expectation while managing
the project. One of the measurement instruments used to
measure service quality is SERVQUAL [3]. It studies the
difference between user expectations and perception. It has
various dimensions including tangibles, reliability, respon-
siveness, assurance, and empathy [3].That means quality
insurance is an important factor to satisfy user expectations.

Additionally, identifying the requirements correctly from
the beginning of the project is a key factor of satisfying user
expectations. Requirements can be classified into three sets
[15]. First, users change their requirements constantly, they
may not know at the beginning what they want in the future.
Their needs change based on certain reasons such as their
situation, funding or even politics. Second, users have dif-
ficulty in information processing. Generating expectations
depends on the user mental model which is subject to dis-
tortion. The user capacity in information process is limited.
They may not be able to call all situations. They may focus
only on some common requirements and ignore rare cases,
which affect the overall correct functional requirements of
the delivered system. Finally, analysis of requirements is not
based on positivism. It is not a simple task to formulate the
requirements and problem, as the user states literally. Since,
what is in the user mental mode is different than what they
say. These requirements should be addressed and managed
cautiously.

As a result, satisfying user expectations requires ensur-
ing a high quality product that meets their requirements.
This in turn needs good management for the user expecta-
tions from the beginning of the project, when the user is ex-
pressing a set of requirements, to the end of the project life
cycle. This can also be achieved by good testing throughout
the life cycle. Poor testing and management of user expecta-
tions lead to unnecessary extra effort, money and time.

1.1 Managing User Expectations

Managing user expectations can be carried in two differ-
ent scenarios, one when the user expectations are less than
what is perceived. The other one is when the user expecta-
tions are more than what is delivered. In the first case the
user would undervalue the system, while in the second sce-
nario the user might be disappointed. Both cases negatively
affect the delivered system and by then the stakeholders can
consider it a failure. One aspect of software project failure
can be defined as the gap between the user expectations and
the delivered system outcome. In consequence, realistic level
of user expectations may play a major goal towards project
success. This raises the importance of managing user expec-
tations which is defined as “the actions a project manager
performs to ensure that the assumptions held by the user

FIGURE 1. Project Management Diamond

FIGURE 2. Expectation-confirmation Theory

for a software project are realistic and consistent with the
software deliverable promised by the project team” [18].

Another study related to managing user expectations
is the expectation-confirmation theory which studies user
behaviors and has a strong relationship between user expec-
tation, performance, and satisfaction. Figure 2. illustrates the
expectation-confirmation theory. A prior important stage
before using software is to develop individual expectations.
After using the software, the users have to develop opinions
based on its performance. Consequently, the expectations
are compared to the performance and the developed expec-
tation can be whether it is confirmed or disconfirmed. If the
expectations are disconfirmed, the user satisfaction is affect-
ed negatively and may change the user opinion of accepting
the project [4].

One technique of managing user expectations is to adopt
the user centralized approach within the project lifecycle.
The main goal of this approach is to satisfy the user, which
means satisfying and meeting users requirement with their
expectations. The user centralized approach involves three
main strategies which complement each other and lead to a
successful management of user expectations. These strat-
egies are user involvement, leadership and trust [18]. These
strategies were identified based on a real study aimed to
address the risk of failing to manage user expectations. In
this study, 12 software project managers from large IT and
management companies were interviewed. They were asked
to recall two different experiences they faced previously.
In the first experience, they successfully managed user
expectations and in the other they failed to manage user
expectations. Analysis and comparison were conducted on
the entire situation of 24 experiences. User involvement is
about making the user interact in the process of the project
lifecycle. Leaderships consist of two types: a project leader
and a champion leader. While the first deals with the soft-
ware development team, the other deals with users. Finally,
trust is used by managers to make the users feel that they are
working with them not on or over them.

Any software development life cycle passes through dif-
ferent phases. User requirements are gathered at the begin-
ning of the life cycle. In this phase it is crucial to understand

and analyze these requirements in order to build a high
quality product that satisfies the user when the product is
delivered. If the delivered product meets these requirements,
this certainly satisfies the user. User satisfaction is also the
main goal of the testing phase where the user requirements
are verified. Thus, among all phases of the life cycle, the
testing phase is the most crucial phase which focuses on
ensuring high quality of the software product that meets
user requirements. Testers in all testing levels check whether
user requirements are achieved which leads to satisfaction.
The next section will present the software testing phase in
more details.

2.	Software Testing
Software testing is an essential task of software qual-

ity assurance that leads to users’ satisfaction. Thus many
software companies and organizations spend most of their
resources on testing [14]. Software testing has many defi-
nitions, briefly it is defined as the process with the goal
to find bugs and errors in a software product before it is
delivered to the end user [21]. It also aims to make sure that
all customer requirements have been achieved. The testing
process includes all dynamic or statistical activities that are
carried out to ensure that the product satisfies the end user’s
requirements and specifications.

2.1 Software Testing Life Cycle (STLC)

Software testing life cycle is a crucial concept that pre-
sents the different phases of testing. Every organization has
its own STLC that is affected by the management’s policies.
In this section, we will shed light on these different testing
phases.

2.1.1 Requirement Analysis Phase

In this phase the test team tries to understand and ana-
lyze the users’ requirements by interacting with them. These
requirements could be either functional where it defines the
function of the system or non-functional such as security

Time

Scope

CostQuality Expectations

Expectation

Satisfaction

Perceived
Performance

Acceptance

CASE STUDY /// TOWARDS AGILE APROACH FOR BETTER USER SATISFACTION

MAY-AUGUST 2014 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 5352 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | MAY-AUGUST 2014

availability [23]. It is important to understand these require-
ments in order to achieve satisfying the end user.

2.1.2 Test Planning Phase

Planning the testing is a crucial phase of testing life cycle
to ensure that the project is delivered with good quality on
time and within reasonable cost [14]. Test plans consist of
testing methodologies, testing environment, testing strate-
gies and availability of hardware and software resources. All
test phases should be included in the test plan. Subsequent
separate test plans are developed for each phase with spe-
cialized teams. This phase helps to estimate the project cost,
time and effort [8].

2.1.3 Test Case Development Phase

Test Case development begins when test planning tasks
finishes. This phase involves creating test cases which
include test conditions and test input as well as procedures
that will be followed while testing the software. Moreover,
test scripts are created including a set of instructions to be
performed on the system being tested, it could be manu-
ally or automated. Test data are also created, reviewed and
reworked here [23].

2.1.4 Test Environment Setup

It can be done in parallel with the test case development
phase. In this phase the software and hardware conditions
as well as the environment of software product testing
are set up. This environment could be a work place or in a
laboratory. Efficiency of test efforts depends very much on
setting up a high level environment where the testing is con-
ducted, thus preparing such environment is needed before
testing is executed [24].

2.1.5 Test Execution

Once setting up of the testing environment has finished
and test cases have been defined, the test execution phase
can start. Testers in this phase conduct testing based on the
prepared test plans and test cases. Different methods are
used here in order to find the errors and bugs. Then reports
are written about these bugs to the development team to re-
solve these bugs and the product is retested again to ensure
that it is free of errors and bugs.

2.1.6 Test Closure

The software testing life cycle reaches the closure stage
when all bugs are fixed and the product meets the user’s re-
quirements. Lessons about strategies and best practices are
taken from current testing life cycle for future works [23, 24].

2.2 Testing Levels

Good testing can be achieved by conducting different
levels of testing which helps to easily identify the bugs as
each piece is tested separately in coordination with oth-

er pieces of the system. It also helps to verify at each level
whether the software product with all its components is
done according to user’s requirements. The main four levels
are shown in Table 3.

2.3 Testing Now or Later

Testing within all classical Software Development mod-
els such as traditional V model, spiral model and waterfall
model, is exercised at the end of life cycle [21]. Therefore
earlier phases require revisiting for bugs to be fixed if they
occur, which could be more expensive and cause the product
to be delivered late.

Many modern studies prove that it is better to spread
testing throughout the development lifecycle to have better
results that meets user’s expectation. According to Huq’s
simulation study, it was found that concurrent testing
after each phase is less expensive than testing after coding.
Though it might require the same or more efforts and time
that are spent in testing after each phase, later it will save
time and efforts in the maintenance phase. His study also
suggests that better performance of the software product
that achieves user satisfaction can be done through testing
simultaneously [13].

Agile approach supports this idea where better user
satisfaction can be achieved by simultaneous testing. Also to
have the user involved through the life cycle to be sure that
the product is not far from user’s expectation. This approach
will be discussed in detail in the following section after
showing some limitations of the classical models that lead to
transferring to the agile approach.

3.	Classical Software Lifecycle
Development Approaches

Large software projects have many challenges to succeed.
This is due to complexities in software applications and
hardware infrastructure [20]. Large size software projects
are executed in long periods. During such long periods,
many changes might happen worldwide as well in the same
organization. Changes can be in emerging technologies, ob-
stacles in hardware, gaps between stakeholders and develop-
ment teams, and redirecting of resources. Additionally, it is
very difficult to predict costs and required resources. In fact,
this is a primary reason behind exploding costs that might
accelerate a project failure. As a result, it is hard to build a
precise project plan for future. Furthermore, multi-nation-
al organizations may have multiple software development
teams located in different locations around the world. These
types of distributed teams are hard to manage and interact
with project managers. So there could be a delay in receiv-

Testing level Function Responsibility

Unit testing

Testing the smallest piece
of the product separate
from other parts to check
its functionality and
correctness of the codes
and correctness of outputs
based on inputs [8].

Programmers

Integration
testing

Testing different parts of
the product in combination
to ensure they are working
together without contra-
diction.

Special testers

System testing

Testing the entire system
to ensure that it is aligned
with user requirements,
and checking its func-
tionality.Testing includes
security testing, volume
testing, usability testing,
and performance testing
[8].

Tester (must have
knowledge about
the components
of the system and
their functionali-
ties [23, 16].)

Acceptance
testing

Testing the entire system
to ensure it meets the
actual requirements.

End user

ing directions, especially if there is a centralized
management approach. One of the software chal-
lenges in most software development projects is
the change of requirements while progressing to
the project execution. These late changes can dra-
matically extend the project duration and explode
costs and resources, due to the complexity of soft-
ware projects and hardware infrastructure. These
late changes are not planned, and it requires
modifying all development cycles steps, such as
analysis, design, implementation and testing.

3.1 One-Shot Software Development Models

One Shot models are software development
models in which the stakeholder cannot see the
product and test it until the completion of the
product. There are two models addressed in this
paper as one shot models, namely: waterfall model
and Spiral model.

3.1.1 Waterfall Model

Waterfall model is a common model for
software development projects [20]. This model is
divided into six steps, namely: planning, require-
ments analysis, design, implementation, and test-
ing. The sequence of these steps is consecutive. In
other words it moves from one step to another. A
step is not preceded until the completion of the
previous step. Such model does not accept late
changes. Additionally, the stakeholders are not
involved except in the early steps such as planning
and requirement analysis. Such model is seriously
affected by software project challenges, hence
resulting in failure. Figure 3. depicts the waterfall
model.

3.1.2 Spiral Model

On the other hand, spiral model involves
important stakeholders to review each step’s
outputs [5]. Still, it is an advanced representa-
tion of the Waterfall model. During the software
development process, the stakeholders can see
incremental prototypes. Furthermore, a spiral
model introduces the risk analysis for each phase
of software development life cycle. However,
stakeholders are unable to see any real component
of the product until the entire project is complete,
as a result, this model is inflexible with the late
changes that can appear after the development
process is complete.

3.2 Incremental Software
Development Models

Incremental software development mod-
els are based on breaking down the developed

software application into smaller components
[12]. These smaller components can be developed
in sequence or in parallel according to availa-
ble resources and dependencies. Each of these
components is developed in short-term unit time
increment. There are different models adapting
this idea and these models have different names
for an increment such iteration or sprint. Such
increment is easier to plan and predict. Addi-
tionally, early feedback can be forwarded to the
development team by concerned stakeholders.
Late changes could be feasible during an iteration
because it requires a given component. Moreover,
any future integration can be taken into account
in this change as it already becomes a part of a
component. Furthermore, a customer might be
able to start using such component. Figure 4.
illustrates the incremental model.

TABLE 3. Testing Levels

CASE STUDY /// TOWARDS AGILE APROACH FOR BETTER USER SATISFACTION

MAY-AUGUST 2014 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 5554 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | MAY-AUGUST 2014

4.	Agile Software Lifecycle
Development Approach

In addition to previous experiences of software models,
agile methodologies have also emerged. Agile models are
flexible, incremental, human-elaborated, self-organized
teams, software development methodology [20]. Agile
principles mainly stem from three primary sources, namely,
lean production, agile manifesto and incremental software
model. Agile Manifesto is a group of people who introduced
12 principles for agile methodologies [26]. These principles
recommend several aspects in software development pro-
cess. These aspects are customer involvement and satisfac-
tion from the beginning to the end. Late changes should be
taken into account at any point. Breaking down a software
project into smaller increments and each increment duration
should be short, approximately weeks and months. Shorter
durations are also preferred over longer ones. Moreover, in
a team the collaboration of individuals is a crucial aspect in
the agile approach in terms of decision making, trust, and
motivation. Frequent team meetings should be encouraged
in all organization hierarchal levels to be able to overcome
outstanding obstacles and adopt changes. Teams should be
authorized to organize themselves as they know the skills
and talents of the internal team members. Finally simplicity
is an important aspect of the agile approach. This aspect
apparently appears in decentralized management approach,
and smaller component iterations. Team members can
evaluate their assigned task situation and their ability to
make the correct decision about a given problem in their
scope. For example, the project manager whose scope should
focus on high level goals instead of spending so much time
and effort on details. There are many software development

models that are considered to be under the agile umbrel-
la, such as lean software development, Scrum, test-driven
development, extreme programming, and rational unified
process. In the following section we are going to discuss
“Scrum” which is the most common model.

4.1 Scrum Software Development

Scrum is a specific iterative, predefined-roles agile model.
In Scrum, the development life cycle is divided into sprints
or iterations. Each sprint is usually accomplished in two
weeks. This model has three roles, namely: product own-
er, team, and Scrum master. Additionally, there are three
documents in this model: product backlog, sprint backlog,
and sprint results. Finally this model requires three kinds
of meetings: sprint planning meeting, daily Scrum meeting,
and sprint review. Figure 5 is a diagram that illustrates the
Scrum software development lifecycle.

Product owner is the representative of stakeholders and
is authorized to express all stakeholders’ requirements, ap-
prove the deliverables, and release payments of the project.
Team on the other hand is responsible for developing and
testing sprint tasks. Teams also have the responsibility of
organizing themselves and distributing tasks among their
members. The third role is the Scrum master, responsible
for attaining the sprint process goals, sprint quality and
progress. In addition, he or she is responsible for overcoming
outstanding issues and eliminating any obstacles for a given
sprint. Scrum master can also modify the Scrum process
to best fit the requirements of the project and organiza-
tion. The most important responsibility of Scrum master
is to preserve the high quality of sprints and not leave any
pending bugs in order to prevent any future accumulated
bugs. The added value in Scrum is that the Scrum master
is not responsible for managing any team tasks. His role is
to motivate the team members, share responsibility, and let
them take their own decisions in their scope which is the
assigned sprint.

Scrum monitors product documentation in three
documents respectively; product backlog, sprint backlog,
and sprint results. Product backlog is the master log file
that contains all product requirements. The sprint backlog
contains all required user stories in a given sprint. A user
story is provided by product owner and stakeholders which
contains the full description of an end-to-end process. Addi-
tionally, it records the interactions between team members,
Scrum master, and product owner. Once a sprint user story
is accomplished by a team, verified by Scrum master, and
approved by product owner, it is then recorded in the sprint
results. Otherwise it is returned back to the product backlog
to be reworked in the future.

A recommended activity in agile is face-to-face interac-
tion. Scrum model determines three kinds of meetings, first,
sprint planning meeting, in which, new sprint is planned in
collaborating with all primary Scrum participants. Team,
Scrum master, and product owner negotiate the sprint plan.

FIGURE 3. Waterfall Model

Then, the product owner selects some product
user stories that can put together a product
component and can be accomplished during one
sprint. Moreover, the product owner prioritizes
these user stories. The Team in turn estimates
the required time. Second, daily sprint meetings,
15 minutes long, guided by the Scrum master are
held with team members to follow up what was
accomplished the day before and what is going
to be done the next day for each team member.
Additionally, the barriers are evaluated and
sorted out by the Scrum master in daily sprint
meetings. The final objective of the daily sprint
meetings is for the Scrum master to evaluate the
Scrum process and enhance it, if required. In the
last sprint review meeting all sprint participants
review actual results with stakeholders and verify
its completion or stakeholders express their feed-
back, and the user story is sent back to product
backlog to be worked on later.

Scrum agile approach covers the three aspects
of the user-oriented approach which are user
involvement, leadership and trust. User involve-
ment is the main criteria in the agile approach
which can be exploited as follows: effective user
involvement during the development process of a
software project is crucial for the overall success
of the project. The involvement must be inter-
active such that the product owner should focus
on listening to user’s concerns and questions. In
addition, the Scrum master has to let the users be
part of the project lifecycles by letting them make
their choices, when there may be some conflicts
or tradeoffs. For instance, they may give higher
priority to budget over functionality or schedule
over performance. For a large group, it is useful
to break down the group into smaller groups and
exchange ideas with them. It is also important to
train the helpdesk on communicating with users
to make them feel comfortable with the team
during the lifecycle of the project. Informing the
users with the progress is essential to make them
feel involved and a part of the project [18]. Failing
to interactively involve the user means having to
deal with requirements uncertainty and failure to
meet the business goals.

Also, leadership is adopted in the agile process
with the following: the product owner can act
as project champion for the users. The project
champion is responsible for communicating with
users in order to manage their expectation. Suc-
cessful management of user expectation starts by
promoting the vision and purpose of the project,
and also educating the users on the value of the
software and ensuring they are engaged in the
different phases. One important characteristic

FIGURE 4. Incremental Model

TABLE 2. Scrum Software Development Lifecycle

	
 Incremental	
 delivery	
 plan	

Identify	
 system	
 objectives	

Plan	
 increments	

Create	
 open	
 technology	
 plan	

Repeat	
 for	

each	

increment	

Design	
 increment	

Implement	
 the	
 increment	

Evaluate	
 the	
 results	

Feedback	

Requirements

Design

Implementation

Tests

Support

CASE STUDY /// TOWARDS AGILE APROACH FOR BETTER USER SATISFACTION

MAY-AUGUST 2014 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 5756 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | MAY-AUGUST 2014

of project champion is to have a clear and strong vision of
the project goal. Moreover, the champion should be strong
in leadership to ensure the successful outcome of high-risk
projects. On the other hand, the Scrum master acts as a pro-
ject manager who oversees the completion of all tasks during
the development process. The manager responsibilities
include leading all users on the right path and ensuring that
his team work is done effectively. The manager should take
strong management control over the scope of the project. He
needs to keep motivating his team by not requiring from the
members to do more than what they are willing to do [18].

Moreover, trust is maintained by the Scrum master to
build strong relation with product owners. The trust exists
within any situation where relationships are involved. That
is, the Scrum master has to talk with all product owners
about any problem faced during the project development.
It is important for product owners to hear about any prob-
lem from the Scrum master first rather than from someone
else. A strong Scrum master makes all product owners feel
that they are not over committing to something. The Scrum
master should be transparent with the product owners and
tell the truth about the state of the project. Sharing good and
bad aspects with the product owners and offering precise
time for deliverables helps to build strong users trust. Final-
ly, the Scrum master should totally avoid the general saying,
“Fake it till you make it” to not lose users trust. Losing users
trust leads to failure in managing user expectation, hence
leading to project failure [18].

5.	Iteration planning
According to the Scrum model, it is apparently impor-

tant to achieve two prerequisite tasks before starting any
sprint. The first task is grouping a number of development
resources to form a sprint team, which is done by task
assignment. The second task is to define all sprints and their
dependencies. One of the suggested approaches that proved
to be an optimized approach of iteration planning is the
semi-automated planning of iterations [11]. This context re-
lease and increment are used interchangeably. Additionally,
iteration and sprint are used interchangeably.

5.1 Release Planning

Important decisions are made during the release plan-
ning phase [6]. After requirement analysis and software
product specifications are complete. Requirement depend-
encies enforces rigid order of implementation, these are
determined based on components prerequisites and tech-
nical requirements. It is the responsibility of the project
manager and technical team to analyze such kind of de-
pendencies. These dependencies are constraints that cannot
be overridden by priorities and this order must be followed.
After dependencies are analyzed, it is possible to assign the

requirements a priority, which is based on the stakeholders
importance and priorities.

5.2 Task Assignment

Most approaches used in task assignment involve
machine learning methods, such as bug tracking and
version controlling systems. The Project manager analyzes
all project tasks [6]. Then, all related tasks are grouped to
accomplish an iteration within a given release. Then each
task is given an estimate to specify the time it needs to be
performed. Finally, the project manager can assign it to the
developer to implement it according to the plan in a certain
iteration.

5.3 Semi-automated planning of iterations approach

In conventional agile processes, task assignment and
release planning is done separately. One of the suggested
approaches that proved to be an optimized approach of iter-
ation planning is the semi-automated planning of iterations
[11].

Iterations are normally a collection of implemented
requirement in a predefined time period with a planned
outcome, which is called a release. Release represents a piece
of deliverable software to a customer.

The two dimensions of a problem affecting the deci-
sion on the planning iterations are release planning and
task assignment. Stakeholders are divided into two types,
external and internal stakeholders. External stakeholders are
interested in the application and their implemented require-
ments. Internal stakeholders are interested in the imple-
mentation aspects. Prioritizing the requirements is based on
their interests. The Project manager sets the task based on
the requirements identified and assigns it to the sprint to be
implemented according to the plan in an iteration. The main
resource in this approach is the developer, where a develop-
er bears two main constrains: workload and expertise. The
workload of the developer is defined by time availability and
the expertise regards how familiar and skilled the developer
is with the task assigned.

The objective of the semi-automated iteration planning
approach is to optimize iteration planning for the two
criteria given above: release planning and the task assign-
ment. The result of the following approach will be a plan with
a pre-defined number of iterations detailing every task that
should be accomplished, in a given iteration, by the developer.

The approach suggested in [11] of semi-automatic plan-
ning iterations is summarized in the following four steps.
It starts with the preparation step which includes modeling
all the required information. This basically involves mod-
eling requirements, setting the priorities for each require-
ment, defining the estimated task and defining the available
resources. The second step regards determining expertise,
where expertise in the identified tasks of every developer
should be determined. This is done to optimize task assign-
ment in planning iterations. Measuring expertise is done

using the existing data about the developer saved from pre-
vious tasks performed. Such information can be found in a
task management tool, called UNICASE or other task man-
agement tools. The third step is the actual iteration planning
done by using a genetic algorithm. It optimizes the iteration
plan according to the priorities and dependencies provided
by the requirements. It also helps optimizing the developers’
workload and expertise.

Using a genetic algorithm scheme helps identifying the
best solution to the iteration planning problem. Initially
a random population is generated then compared to the
evaluation function until the final best solution is generated.
The evaluation function will evaluate individuals (solutions)
in every generated population of the genetic algorithm. The
evaluation considers dependencies between: requirements,
requirement priorities, developer’s expertise and the availa-
bility of resources, where each solution will be evaluated by
an evaluation function. For each Solution S, an evaluation
that first calculates four tuples with these elements: de-
pendency, priority, expertise, and overload. The result of the
generated plan can be finalized by the manual modification
and review done by the project manager.

6.	Agile Project Management for
Government Case Study:
FBI Sentinel Project

In 2001, the FBI realized the usage of separate and obso-
lete technologies to manage electronic case documents and
digital media relevant to evidence and intelligence informa-
tion [22]. These are several ad-hoc modules which are not in-
tegrated to each other. Additionally they are used to manage
these pieces of information. Management and search of such
files are not efficient and are unreliable. Moreover, there are
difficulties in exchanging these files and usability of existing
ad-hoc processes. These requirements motivated the FBI
to have a new system that enhances existing systems and
replaced them with new Virtual Case File system (VCF).

The first attempt to develop this system was based on the
classical waterfall model. So, it required building a com-
plete plan and comprehensive specifications to meet all user
requirements. Such complete plan was impossible to be built
in this large software project. Additionally, it had to take
into account all user requirements and expectations. The
system then had to be designed, implemented, and tested
completely in sequence. After its completion, the entire sys-
tem could be demonstrated to the stakeholders. It costs time
and money to have a complete plan, and once it is finished
the user might not accept the resulting system, because the
users were not involved in the development process and no
earlier feedback had been provided. Technical barriers were

raised too late, hence having to rebuild the system from
scratch. Additionally the stakeholders did not accept the
new system.

This attempt cost $475 million and spent three years
developing it. Traditional audit reports were about incom-
plete and incomprehensive plans. Furthermore, the design
was not precise, not meeting the stakeholder requirements,
and no specific milestones. Oversight of the project was also
inadequate. Finally, there were no penalties imposed on the
suppliers.

The second attempt was also on the same waterfall model
but a stricter model to have a more precise plan, correct
design, and milestones. Moreover, these milestones regarded
one attempt and stakeholders were not involved until the
end of each milestone. In 2005 it was suggested to access the
old system in enhanced web-interface. 25% of the budget was
planned to be paid for oversight on the contractor. Extra ef-
forts were assigned to the contractor by the oversight team.
In this attempt the initial estimates are not justified. At the
end of phase 1 with extended two months, some function-
alities were working and 57 critical functionalities were not.
It required to access new and old systems. As a result, it was
not efficient to use an old and system at the same time. Then
the new system was stopped. Some reasons for the second
attempt failure regard the non-technical background of the
project management office staff. Plans were not accurate as
usual. After three years, users completely rejected all the
system’s deliverables phases due to the system’s poor usabili-
ty interfaces, poor performance, and other quality problems.
According to these reasons the second attempt also failed.

In September 2010, the FBI made a decision to alterna-
tively use the Scrum agile software development process
instead of the waterfall process. Furthermore, they decided
to replace traditional contractors with product experts. The
waterfall requirement document was converted to Scrum
product backlog. This requirement document resulted in 670
user stories and grouped into 21sprints. The project man-
ager role also was replaced by a Scrum master. The Scrum
master’s role is not to manage the project; the role is to lead
self-organized teams and sort out any possible barriers en-
countered by any team.

The teams started working by prioritizing user stories.
Additionally, they created a relative measure to weigh each
task based on complexity and size, and its name is the story
point. The story point metric helped each team to self-eval-
uate. Each sprint is given two weeks to complete. At the end
of each sprint, different tests were performed against each
user story. A user story could not be considered as com-
plete until it passes all required tests and is approved by the
stakeholders. In case of test failure for a given user story, it is
transferred to the product backlog to be reworked again in
the next sprint or any future sprint. After the completion of
high priority sprints, it is possible to have an idea about the
overall view of the entire project, and the time expected for
its completion. There were actually two primary increments

CASE STUDY /// TOWARDS AGILE APROACH FOR BETTER USER SATISFACTION

MAY-AUGUST 2014 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 5958 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | MAY-AUGUST 2014

to complete the whole project, and each one consists of the
half of all sprints.

Eventually, the Scrum agile model had decreased the
planned project budget into 52% to accomplish 88% of the
required functionalities. In the projects’ 18 months, two
product releases were completed to be used. Eventually, the
stakeholders accepted the new system to be used and most
feature capabilities were operated.

7.	 Discussion
A successful project manager should know how to man-

age user expectation successfully to avoid system failure.
For example, a manager should not overwhelm the user
with problems he is facing, which is exhausting to the user.
Furthermore, some users frequently change their ideas and
occasionally with unrealistic requirements. Hence, it is
desirable not to involve such users very often as in the Agile
Approach. An important issue to satisfy user expectations is
to carry out a solid and continuous testing from the begin-
ning. As previously mentioned, testing after coding can be
very expensive and might not meet the user’s expectations.
This may cause the whole product to be cancelled, which
will certainly be expensive as will cost a lot of effort, money
and time. This also causes delay in delivering the project and
can eventually lose the users’ trust. In addition, if the project
is not well managed, there may not be sufficient time for
testing at the end, which may lead to poor testing. Therefore
we support the idea of performing the test through the soft-
ware development life cycle to have better results and better
user satisfaction.

The Agile Scrum model is a practical model to overcome
long running projects and the main problems related to
large projects, such as an early perfect plan. And involving
the stakeholder has yielded successful stories to receive the
stakeholder’s early feedback. It is the main advantage of user
satisfaction. As a result, these feedback points are addressed
earlier as the stakeholder heavily participates in the develop-
ment process. Additionally, the stakeholder is in direct con-
tact with developers to reflect the actual requirements and
eliminate early any conflict detected between the developer
and the stakeholder. Technical issues that could be predicted
are also detected early and the development team can sort
them out accordingly.

However significant work must be done before starting
any sprint. Sprints usually implement atomic components.
In the long run, some of these components need to be
integrated with some other components. If some of these
completed components start operating, it is difficult to mod-
ify them for an integration requirement during operation.
If only the stakeholders’ satisfaction is taken into consider-
ation, such integration issues will not be discovered until
the product is fully completed. So, it is the role of the Scrum
master to realize such important aspects. In my view, to

overcome such issue, there should be a dedicated team who
has a comprehensive view of the system. This team is the in-
tegration team and its role is to ensure the sprints adopt the
integration. The integration team can ask the development
teams to previously prepare a standard integration inter-
face. This interface should be previously tested and verified
for each sprint. If such component is in operation, future
integration should not be a problem, because the integration
can be done while the end users continue working without
any interruption.

User involvement should undergo a policy to control his
requirements. User satisfaction differs from one person to
another. Thus, there must be an average satisfaction level.
For example one user can accept many things because he
is uncertain about his or her requirement or is not familiar
with all requirements. Consequently, he or she might give
an incomplete user story. Another one might require user
stories that are not completely applicable. User stories must
be controlled by some criteria or policy. Product backlog
is an excellent tool to document such user requirements.
Additionally these user requirements should be controlled
by project constraints which are scope, time, and cost. It is
the role of the Scrum master and product owner to manage
such problems.

8.	Conclusion
In conclusion, the development process of any software

project should have a managerial focus in satisfying user
expectations. Delivering a software project that satisfies
all user requirements will save money, time and efforts.
Therefore, successful management of user expectation is
vital towards successful project. It is also essential to carry
out good testing throughout the development life cycle to
achieve user satisfaction. Furthermore, ‘agile’ prioritizes user
satisfaction and recommends the customer or stakeholder
to be an essential party in the development team, thus filling
the gap of understanding requirement earlier. Any addition-
al inquiries could be promptly answered and clarified by the
stakeholder since the stakeholder is frequently in touch with
the concerned development team. Furthermore, the develop-
ment team can offer better enhancements or innovative ide-
as to the stakeholder, as a result, more trust is gained from
the customer representative. The change for agile adopted
have increasing the user satisfaction as the user feels more
comfortable with late changes, because any late change may
be considered a major change as it obviously appears in clas-
sical one-shot software development models.

[1] Agbor, J. The Relationship between Customer Satisfaction and Service Qual-
ity: a study of three Service sectors in Umeå. Umeå School of Business, http://
umu.diva-portal.org/smash/get/diva2:448657/FULLTEXT02.html, (accessed
on Dec. 2013).

[2] Andersson, M.; Liedman, G. (2013) Managing Customer Expectations: How
Customer Expectations are Formed and Identified during a Project Delivery,
Chalmers University of Technology, Göteborg, Sweden, Report No. E 2013:061.

[3] Berry, L.; Zeithaml, V.; Parasuraman, A. (1990) Five imperatives for improving
service quality. Sloan Manage Rev, 31(4): p. 29–38.

[4] Bhattacherjee, A. (2001) Understanding information systems continuance:
an expectation-disconfirmation model, Management Information Systems
Research Center, Vol. 25, No. 3, p. 351-370.

[5] Boem, B. W. (1988) A Spiral Model of Software Development and Enhance-
ment, ACM, Vol. 11, No 4, p.14-24.

[6] Bruegge, B.; Creighton, O.; Helming, J.; Kögel, M. (2008) Unicase – an Ecosys-
tem for Unified Software Engineering Research Tools, Third IEEE Internation-
al Conference on Global Software Engineering, ICGSE 2007.

[7] Elliott, J. Achieving Customer Satisfaction through Requirements Under-
standing, Defence Evaluation and Research Agency, Malvern, UK, http://www.
iscn.com/select_newspaper/requirements/dera.html, (accessed on Dec. 2013).

[8] Everett, G. D.; Jr, R. M. (2007) Software Testing: Testing across the Entire
Software Development Life Cycle, ISBN 978-0-471-79371-7, p. 69-91.

[9] Gopalakrishnan, D.; Sharma, M.; Kumar, S. Managing Customer Satisfaction
at a Maruti authorized service station Service Marketing Management, Indian
institute of management, Bangalore, http://www.slideshare.net/gopal_capri-
corn/service-marketing-management-group-project-customer-satisfaction,
(accessed on Dec. 2013).

[10] Hamil, D. (2005) Expectation Management: A “Gateway Key” to Project
Success – Client Satisfaction. A 2005 Professional Development Symposium
White Paper, p. 2-3.

[11] Helming, J.; Koegeland, M.; Hodaie, Z. (2009) Towards Automation of
Iteration Planning, OOPSLA ‘09 Proceedings of the 24th ACM SIGPLAN
conference companion on Object oriented programming systems languages
and applications, ACM 978-1-60558-768-4/09/10, p. 965-971.

[12] Hughes, B.; Cotterell, M. (1999) Software Project Management, McGraw-Hill.
[13] Huq, F. (2000) Testing in the software development life-cycle: now or later,

International Journal of Project Management, Vol. 18, No. 4, p. 243-250.
[14] Jovanovic, M. (2008) Software Testing Methods and Techniques, p. 30-40.
[15] Lai, L. (2012) Managing user expectation in information system develop-

ment, World Academy of science, Engineering and Technology, Vol: 72 2012-
12-23.

[16] Li, E. Y. (1990) Software Testing in a System Development Process: A Life
Cycle Perspective, In Journal of Systems Management, Vol. 41, No. 8, p. 23-31.

[17] Munns, A.; Bjeirmi, B. (1996) The role of project management in achieving
project success, International Journal of Project Management Vol. 14, No. 2, p.
81-87.

[18] Petter, S. (2008) Managing user expectations on software projects: Lessons
from the trenches, International Journal of project Management, Vol: 26.7, p.
700-712.

[19] Schmidt, R.; Lyytinen, K.; Keil, M.; Cule, P. Identifying software project risks:
an international Delphi study, http://sydney.edu.au/engineering/it/~isys3207/
readingsondesign/identifyingprojectrisk.pdf, (accessed on Dec. 2013).

[20] Stober, T.; Hansmann, U. (2010) Agile Software Development: Best Practices
for Large Software Development Projects, Springer.

[21] Tsai, B.; Stobart, S.; Parrington, N.; Thompson, B. (1997) Iterative Design and
Testing within the Software Development Life Cycle, Software Quality Jour-
nal, Vol. 6, Issue 4, p. 295-310.

[22] Wernham, B. (2012) Agile Project Management for Government Case study:
The Success of the FBI Sentinel Project, Agile Business Conference (ABC2012).

 [23] Introducing Software Testing, http://hiromia.blogspot.com/2013/07/intro-
ducingsoftware-test.html, (accessed on Dec.2013).

 [24] Software Testing Life Cycle http://qualitytestified.blogspot.com/2013/02/
software-testing-life-cycle.html, (accessed on Dec. 2013).

[25] Testing at different phase of software development life cycle, http://www.
kostcare.com.html (accessed on Dec. 2013).

 [26] Principles behind the Agile Manifesto, http://agilemanifesto.org/principles.
html, (accessed on Dec. 2013).

r Nizar Al Hawajreh is a
senior application engineer
with Aljazeera Media
Network since more than
ten years. His experience
is related to the develop-
ment of archiving systems,

integration of heterogeneous media sys-
tems and also design and development of
automated Human-Resources business
processes. His primary research is related to
project mangement and formal verification
of automated workflows (model checking
techniques). He is currently finalizing his
master thesis on these subjects at the Com-
puter Science and Engineering department

of Qatar Unniversity.

r Abdelaziz Bouras is
ictQATAR Chair Professor
at Qatar University, QU.
He is currently the Chair of
the IFIP WG5.1 on « Global
Product development for the
whole life-cycle”. His current

research interests focus on distributed
systems for lifecycle engineering, including
ontologies and lifecycle modeling for
intelligent products. He teaches Software
Project Management and Simulation in the
Department of Computer Science and En-
gineering of QU. Also was professor at the
University of Lyon (France) where he leads
a research team of the LIESP laboratory. He
has been conferred the HONORIS-CAUSA
honorary Doctoral Degree in Science of
the Chiang Mai University (Thailand) from
Her Royal Highness Princess Maha Chakri
Sirindhorn of Thailand. Prof. Bouras is Edi-
tor-In-Chief and founder of the Internation-
al Journal of Product Lifecycle Management
(IJPLM), Associate-Editor and co-founder of
the International Journal of Product Devel-
opment (IJPD), and Editorial Board Member
of several International Journals related
to knowledge management and supply
chain management. He is also co-founder
of the new International Federation of
Information Processing IFIP WG5.1 Group
on Product Lifecycle Management (PLM)
for which he acts as Vice-Chair in charge of
Europe and Africa; and is member of the IFIP
WG 5.7 Group on Integration in Production
Management. He is also the co- founder of
the international WG-PLM and its annual
international doctoral workshop on PLM.

r Ashraf Abualia, Hanadi Al-Thani,
Zohreh Fouroozesh, Kholoud Khalil,
Kholoud Mohammed, Muna Al Ku-
wari, Alanood Zainal Computer Science
Department, College of Engineering, Qatar
University, Doha, Qatar, P.O Box 2713

authors

re
fe

re
nc

es

CASE STUDY /// TOWARDS AGILE APROACH FOR BETTER USER SATISFACTION

MAY-AUGUST 2014 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 6160 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | MAY-AUGUST 2014

