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SENSITIVITY ANALYSIS

r   A B S T R A C T 

Estimating the duration of a project is important in project management. The dependency structure matrix has been used 

to estimate the duration of projects, and it has proven to be useful especially in complex projects, for example project with 

activity overlapping. This estimate is based on the duration of the activities, their interrelationships and the permitted 

level of overlap. However, these variables have uncertainty that generate uncertainty in the duration of the project. The 

methods of global sensitivity analysis Morris and Sobol’ are used in this study to identify the key activities that affect the 

uncertainty in the duration of the project. It is shown that adequate control of the uncertainty in these activities signifi-

cantly reduces the uncertainty in the duration of the project. Examples with and without overlapping are used to explain 

the methodologies.
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identifying the relationship between them, as-
sessing their impact on the project, and assigning 
resources to individual tasks (Browning, 2001). 

Moreover, the scheduling of projects is based 
on finding resources and scheduling activities 
with the goal of optimizing the efficiency of the 
project (Tienda et al., 2011). Overlapping of se-
quential activities occurs on most projects (Srour 
et al, 2013), which requires a two-way exchange of 
information among dependent design disciplines. 
That is, there are interdependent tasks and loops. 
As a result of the factors previously mentioned, 
recent efforts to reconcile project scheduling and 
DSM have sought to produce a tool that serves 
two purposes: analysis and project scheduling 
(Maheswari and Varghese, 2005; Srour et al., 
2013). Researchers have demonstrated that DSM 
is a powerful tool in planning the sequence of 
tasks. 

However, tasks in a project are subject to 
many unknown factors (Herroelen and Leus 2005; 
Perminova et al. 2007) that can lead to changes 
in scheduling. These uncertainty-causing factors 
include: tasks taking more or less time than was 
originally estimated, resources not being avail-
able, required materials being ready before they 
are scheduled to arrive, tasks being  introduced or 
withdrawn, and weather conditions. These chang-
es or uncertainties can cause the schedule to be 
delayed, increase stock, or require major work, all 
of which lead to higher costs than those originally 
planned.

One of the limitations of the research con-
ducted by Maheswari and Varghese is the dif-
ficulty of obtaining a well-founded estimate of 
how long each task, the communication among 
tasks, and the overlap of tasks will take. Gálvez 
et al. (2012) studied the effect of uncertainty of 
task programming using DSM and grey theory or 
interval arithmetic. Shi and Blomquist (2012) ex-
tended the DSM method proposed by Maheswari 
and Varghese (2005) using fuzzy numbers. Re-
cently, Galvez et al. (2015) studied the uncertainty 
of project duration using Monte Carlo simulation 
and DSM.  These studies are related to uncertain-
ty analysis.

Uncertainty analysis refers to the determi-
nation of the uncertainty in output results that 
derives from uncertainty in input factors (Helton 
et al., 2006). Therefore, the previous works are 
related to the characterization of uncertainty 

(grey number in the work of Gálvez et al. (2015), 
fuzzy numbers in the work of Shi and Blomquist 
(2012), and distribution functions in Gálvez et al., 
(2015)) and presentation of uncertainty output 
results. However, no work has performed sensitiv-
ity analysis.

Sensitivity analysis refers to the determina-
tion of the contribution of individual uncertainty 
inputs to the uncertainty in output results (Helton 
et al. 2006). According to Saltelli et al. (2008), the 
GSA can be defined as “the study of how uncer-
tainty in the output of a model (numerical or oth-
erwise) can be apportioned to different sources of 
uncertainty in the model input”. These techniques 
have been widely used in different engineering 
areas and are of great importance to know the 
most significant variables in a model. The general 
objectives of GSA are: a) Identification of signifi-
cant and insignificant factors. Possible reduction 
of the dimensions (number of design variables) 
of the optimization problem, b) Improvement 
in understanding the model behavior (highlight 
interactions among factors, find combinations 
of factors that result in high or low values for the 
model output). GSA corresponds to the evaluation 
of an output model when all model factors are 
simultaneously evaluated, being mainly resolved 
by numerical methods. This methodology has the 
advantage of simultaneously assessing all factors, 
while its disadvantage is that it requires a large 
number of data for which the model is evaluated 
and mathematical techniques are more complex. 
GSA methods can be classified into three groups 
(Confalonieri et al., 2010): 1) Regression methods, 
2) Screening methods, and 3) Variance –based 
methods. Screening methods proceed from the 
area of experimental design and usually applied 
to problems that involve from a few input fac-
tors to a few tens. Examples of these methods 
are fractional factorial design, Morris method 
and sequential bifurcation. In variance-based 
method, the variance of the model output can 
be decomposed into terms of increasing dimen-
sion, called partial variances, which represent 
the contribution of the inputs (i.e., single inputs, 
pairs of inputs, etc.) to the overall uncertainty in 
the model output. Statistical estimators of partial 
variances are available to quantify the sensitivities 
of all the inputs and of groups of inputs through 
multi-dimensional integrals. To preclude a high 
computation cost, Homma and Saltelli (1996) 
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INTRODUCTION 

The sequence of tasks is vital to the development 
of any project. Good sequencing reduces the amount 
of time necessary for completion. The order of tasks 
is influenced by the information flow among them. 
The dependency structure matrix (DSM) can be used 
to model information flow in complex projects, e.g. 
project with overlap. However, the information used 
by the DSM, including task duration, time required for 
communication, and task overlap, can have uncertain 

values. However, there is no methodology for the iden-
tification of significant and insignificant input factors 
on the project duration uncertainty. The aim of this 
paper is to show that global sensitivity analysis (GSA) 
can be used to identify significant and insignificant 
input factors on the project duration using the DSM. 

The DSM is a widely used tool because it allows the 
different parts of the project or product to be broken 
down or to be put together. The complexity is simpli-
fied by breaking down the project into smaller tasks, 
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introduced the concept of a total sensitivity index. 
The total sensitivity index indicates the overall 
effect of a given input, by considering all the pos-
sible interactions of the respective input with all 
the other inputs. Some techniques in this group 
are: the Fourier amplitude sensitivity test (FAST), 
extended Fourier amplitude sensitivity test 
(E-FAST), Sobol’ method, and high dimensional 
model representation (HDMR).

In this paper the Morris and Sobol’ methods 
are applied to project planning using the DSM. 
Through an example it is demonstrated that GSA 
can identify input factors that most affect the 
duration of the project. Then, with proper man-
agement of these input factors, the uncertainty in 
the project duration can be significantly reduced. 
An example, with and without overlapping is 
analyzed. 

1. Strategy Used
In this work an example is used to explain 

how the GSA can be used to identify the activities 
uncertainty that most affect the uncertainty on 
the project duration. The GSA methods used are 
Sobol’ and Morris methods. Then, in this section 
an example is introduced and a brief description 
of Sobol’ and Morris methods are given and ap-
plied to the example. 

Example without overlap

The example consists of six activities from A 
to F, and the DSM representation of the example 
is given in figure 1. The DSM is a square matrix 
containing a list of activities in the rows and 
columns in the same order. The order of activities 
in the rows and columns in the matrix indicates 
the sequence of execution (for more information 
see Maheswari and Varghese, 2005). Values in the 
diagonal are the mean duration of the activities 
(days), for example the mean duration of activ-
ity A is 2 days. A value in the off-diagonal cells 
indicated that these activities are information 
predecessors. This means that activity B needs 
information from activity A and activity D needs 
information from activities B and C. The values 
in the off-diagonal cells will be used later when 
overlapping is included in the example. 

Based on the mean values of the activities the 
conventional project duration is estimated in 14 
days (Figure 2). Note that activity C has not effect 
on the project duration and all other activities are 
in the sequence of execution without any time 

leftover between activities. The conventional pro-
ject duration is estimated with,

(EF)i = (ES)i + Aii     0 < i ≤ n  (1)
(ES)j = Max[(EF)i] 0 < i ≤ n, 0 < j ≤ n  (2)
Conventional project duration = Max[(EF)j] 0 < j ≤ n  (3)

Where n is the number of activities; i all the 
immediate predecessors of j; j the current activity 
chosen in the order as identified by DSM; ES the 
early start; EF the early finish; and Aii the diagonal 
values of the DSM (duration of activity).

Let us assume that each duration activity has 
uncertainty of ±0.5 days with uniform distribu-
tion. Then, for example activities A and D have 
a duration of ~Unif(1.5,2.5) and ~Unif(4.5,5.5) 
respectively. Two questions arise 1) what is the 
uncertainty in the project duration given the 
uncertainty in the activity durations, and 2) how 
important are the activity durations with respect 
to the uncertainty in the project duration. The 
goal of uncertainty analysis is to answer the first 
question, and the goal of sensitivity analysis is to 
answer the second question (Helton et al., 2006).

Global Sensitivity Analysis

GSA methods enable studying how the uncer-
tainty in the output of a model can be assigned 
to different sources of uncertainty in the model 
input when all model inputs are simultaneously 
evaluated.  In our case, GSA methods will be used 
to study how the uncertainty in the project dura-
tion can be assigned to the activity duration and 
overlapping factor uncertainties. Two method are 
used: Morris and Sobol’ methods.

The Morris (1991) method is based on a dis-
cretization of the inputs in levels allowing a fast 
exploration of the model behavior. The aim of this 
method is to identify the non-influential inputs 
with a small number of model calls. The Morris 
method allows classifying the inputs into inputs 
that have negligible effects, input having large lin-
ear effects without interactions, and inputs having 
large non-linear and/or interaction effects. The 
method consists in random One-At a Time (OAT) 
design of experiments with random direction of 
the variation. The repetition of these steps allows 
estimating the elementary effects for each input 
and the consequent calculation of sensitivity 
indices. 

The Morris sensitivity indices are the mean 
of the absolute value of the elementary effects 
(µ*

j) and the standard deviation of the elementary 
effects (σj). The µ*

j is a measure of influence of the 
j-th input on the output; if µ*

j is zero the effect 

A B C D E F A B C D E F

A 2 A 2

B 0.87 4 B 0.13 4

C 0.95 3.5 C 0.05 3.5

D 0.95 0.95 5 D 0.05 0.05 5

E 0.95 5 E 0.05 5

F 0.95 0.95 3 F 0.05 0.05 3
Time factor of processor activities (B

ij
) Time factor of receiving information (C

ij
)

FIGURE 1. DSM showing the mean values of duration of activities and time factor of transfer of information between activities.

FIGURE 2. Estimation and representation of conventional project duration.

FIGURE 3. Results of Morris method with 15 OAT experiments for example without overlap.

of the j-th input is negligible, and the 
larger the µ*

j value the more the j-th 
input contributes to the uncertainty of 
the output. The σj is a measure of the 
non-linear and/or interaction effects 
of the j-th input. If σj is zero then the 
elementary effects have no variations 
on the support of the input. Usually a 
graph of σj versus µ*

j is used because it 
allows to distinguish three group: low 
values of µ*

j (inputs that have negligible 
effect on the output), large values of µ*

j 
and low values of σj (inputs that have 
linear effects without interaction), and 
large values of both µ*

j and σj (inputs 
that have non-linear effects and/or 
interaction).

The Morris method was applied 
to the example (Eqs, 1 to 3) using 15 
OAT experiments which require 105 
model calls. The software R (R Core 
Team, 2013), package sensitivity (Pujol 
et al., 2014), which is a free software 
environment for statistical computing 
and graphics was used. Figure 3 plots 
the results. It is easy to visualize that 
A, B, D, E and F activities are influ-
ential (large values of µ*

j), while C has 
no effects (values of µ*

j close to zero). 
In addition A and F have linear effects 
without interaction (values of σj equal 
to zero), and D and E have non-linear 
effects and/or interaction (large values 
of both µ*

j and σj).
The Sobol’ method is based on the 

partitioning of the total variance of 
model output V(Y), considering that 
the model has the form Y = f(x1, x2, ... 
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xn), where Y is a scalar and xi is a model factor, using the 
following equation (Confalonieri et al., 2010): 

 (4)

Where Di represent the first order effect for each factor 
xi(Di=V[E(Y|xi)]) and Dij(Dij = V[E(Y|xi,xj)] – Di – Dj) to D1...n 
the interactions among n factors. The variance of the con-
ditional expectation (V[E(Y|xi)]) is sometimes called main 
effect and used as an indicator of the significance of xi. The 
Sobol’ method allows calculating two indices, i.e., the first 
order effect sensitivity index corresponding to a single factor 
(xi):

 
(5)

and the total sensitivity index corresponding to a single fac-
tor (index i) and the interaction of more factors that involve 
the index i and at least one index j ≠ i from 1 to n

 (6)

The first order sensitivity index measures only the main 
effect contribution of each input factor on the output vari-
ance. It does not take into account the interactions among 
factors. The first-order sensitivity index (Si) is important 
when the objective is to determine the most important input 
uncertainties. The total sensitivity index (STi) is important 
when the objective is to reduce the uncertainty in the output 
model (Adeyinka, 2007). If the first-order sensitivity index 
(Si) of the i input factor is very small, then the uncertainty 
in xi does not affect the uncertainty in the output model, . 
Therefore, xi is non-influential or unimportant. This does 
not say anything about input interactions or high-order 
sensitivity índices like Si,j or Si,j,k. If the total sensitivity index 
(STi) is also small, then apart from being unimportant, xi 
does not interact with other factors (high-order effects of 
xi are negligible). The implication of small Si and STi, is that 
the uncertainty in xi has no affect on the uncertainty in Y. 
Then, in a subsequent analysis, xi can be fixed to its nominal 
value (mean or median) and further research, measurement, 
analysis and data gathering can be directed to other fac-
tors. Conversely, regardless of the magnitude of STi, a large 
value of the first-order sensitivity index, Si, implies that xi 
is influential. The arithmetic difference between STi and Si 
indicates the magnitude of the interactions between xi and 
other factors.

Sobol’ method was applied to the example (Eqs, 1 to 3) 
with six random inputs with Monte Carlo sampling, it has 
a cost of 400,000 model calls and we repeat the estimation 
process 100 times. The software R (R Core Team, 2013) was 
used with the Sobol-Jansen version in package sensitivity 
(Pujol et al., 2014). Figure 4 plots the results. It is easy to 
visualize that A, F, B, D, and E activities are influential in 
that order (large values of both first order and total Sobol´ 

indices), while C has no effects. In addition D and E have in-
teraction (total and first order indices have different values). 
The interaction in other activities are small. These results 
are in agreement with the Morris method results.

Example with overlap

Let us consider overlap between activities. The overlap 
is represented in DSM in the form of ratios called time 
factors (Maheswari and Varghese, 2005). Two times factors 
are used, the time factor for receiving the information for 
the successor activity (represented by matrix Bij, given by the 
off-diagonal cell in Figure 1a), and the time factor for send-
ing the information from predecessor activity (represented 
by matrix Cij, given by the off-diagonal cell in Figure 1b). For 
example, 0.95 in BCA implies that A can send the required 
information through C at the end of 0.95 times its duration, 
and 0.05 in CCA implies that it is essential that to continue, C 
receives information from A, but only at 0.05 of the time of 
its duration, instead of at the beginning of the task. 

The natural overlap project duration is estimated with,

 (7)
 (8)

 (9)
Where n is the number of activities; i all the immediate 

predecessors of j; j the current activity chosen in the order as 
identified by DSM; ES the early start; and EF the early finish. 
Note that Bii and Cii are the diagonal values of the DSM 
(duration of activity).

Based on the mean values of the activity durations 
and mean values of the factor time the natural overlap 
project duration is estimated at 12.4 days (Figure 5). Now, 
let us consider that each time factor has uncertainty of 
±0.05 with uniform distribution, then the off-diagonal 
values of Bij are ~Unif(0.9,1.0) and the off-diagonal values 
of Cij are ~Unif(0.0,0.1), but BBA ~Unif(0.74,1.0) and CBA 
~Unif(0.0,0.26).  Also uncertainty in the activity durations is 
included.

The Morris method was applied to the example with 
overlap (Eqs, 7 to 9) using 80 OAT experiments which re-
quire 1,680 model calls. Figure 6 plots the results. It is easy 
to visualize that A, B, D, F activity durations and CBA time 
factor are very influential (large values of µ*j), while C, E 
activity durations and BBA, BFD time factors are influential. 
Also, there are interactions and/or non-linear effects in sev-
eral input factors (large values of both µ*j and sj).   

Sobol’ method was applied to the example with overlap 
(Eqs, 7 to 9) with 20 random inputs with Monte Carlo sam-
pling, it has a cost of 1,100,000 model calls and we repeat 
the estimation process 100 times. Figure 7 plots the results. 
It is easy to visualize that A, B, D, F activity durations and 
CBA time factor are very influential (large values of Sobol’ in-
dices), while C, E activity durations and BBA, BFD time factors 
are influential. Several time factors have no effects (values 
of Sobol’ indices close to zero). In addition B, C, D, E and CBA  

FIGURE 4. Estimation of Sobol’ indices for the example without overlap

have interaction (Total and first order 
indices have different values).

2. Discussion
For the example without overlap all 

activities have the same level of uncer-
tainty in duration, ±0.5 days, however 
the effect of these uncertainties on the 
uncertainty of the project duration is 
different. The uncertainty in the time 
duration of activities A and F are the 
most relevant to the uncertainty in 
project duration (largest values of µ*j 
in Morris method and largest values of 
Sobol’ indices). This is because these 
activities are sequential without inter-
action and they will always influence 
project implementation. The uncer-
tainty in the time duration of activities 
D and E also affect the uncertainty in 

project duration. However, activity D 
will affect if the duration of activity D 
is greater than the duration of activity 
E, and vice versa. For that reason these 
activities have interaction (different 
values in first order and total Sobol’ 
indices). In Morris indices, both D and 
E activities have interaction and / or 
non-linear effects, however the model 
is linear (Eq. 1-3), then it must be inter-
preted as interactions.

These results are independent of 
whether the Morris or Sobol’ method is 
used. Sobol’ method requires a signif-
icantly greater number of model calls 
than the Morris method. However, as 
the mathematical model is simple using 
the Sobol’ method is not very costly 
from the computing point of view. 
Sobol’ method is more robust in the 
presence of non-linearity and inter-
action among the activities because it 
explores the complete parameter space. 

Moreover, Morris method is easier to 
implement.

These results indicate that efforts to 
reduce the uncertainty in the project 
duration should focus on reducing 
uncertainty in the duration of activities 
A, F and B. Reducing uncertainty in the 
duration of activities D and E have a 
lower impact on the uncertainty in the 
project duration. Reducing uncertainty 
in the duration of activity C will have 
minimal impact. If the resources are 
limited, the resources must be allo-
cated to estimate the uncertainty of 
activities A, F and B. 

Table 1 shows the results of Monte 
Carlo simulations for various scenar-
ios with 1,000 calls to the model. The 
second column shows the results in 
the project duration when considering 
uncertainty in all activities. Columns 
two, three and four show the results 
when (in its average value) the dura-

FIGURE 5. Estimation and representation of natural overlap project 
duration

FIGURE 6. Results of the Morris method with 80 OAT 
experiments for example with overlap

FIGURE 7. Estimation of Sobol’ indices for example with overlap
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tion of activities A and F, D and E, and C is fixed, 
respectively.

Although the uncertainty in the duration 
of each activity has uniform distribution, the 
project duration is normally distributed. This was 
observed by Gálvez et al. (2015) and confirmed in 
the results observed in this example. Note that 
the average value of project duration is larger than 
the value calculated with the mean values (14 
days), because the interaction was not considered. 
In fact if the activity duration with the largest 
interaction are fixed (D and E) the mean value is 
close to the 14 days.

If all activities are uncertain then the uncer-
tainty in the project duration is 3.4 days, if the 
uncertainty in activity C is removed, the uncer-
tainty in the project duration is not significantly 
reduced, 3.3 days. However, if the uncertainty in 
the activities A and F are eliminated the uncer-
tainty in the project duration is reduced to 1.8 
days, compared with 2.7 days if the uncertainty is 
removed in activities D and E. This confirm that 
GSA can be used to reduce the uncertainty in 
project duration.

The final decision on where to focus efforts in 
reducing the uncertainty depend on these results 
and on other aspects such as the associated cost, 
availability of resources and the feasibility of re-
ducing the uncertainty in the activity duration.

In the example with overlap it is observed 
that in general the time factors have less effect 
on the uncertainty in the project duration, with 
the exception of the time factor CBA. This is not 
surprising because it is the time factor with most 
uncertainty. However, the effect of the BBA time 
factor is not as significant despite having high 
uncertainty. This is because the effect of CBA 
depends on the duration of activity B, whereas the 
effect of BBA depends on the duration of activity 
A (see equation 7), and because the duration of B 
is larger than the duration of activity A its effect 
increases.

If all activity durations and time factors 
have uncertainties, the uncertainty in the pro-
ject duration is 4.1 days (based on Monte Carlo 
simulations), if the input factors that most affect 
the project duration uncertainty are fixed at their 
mean value (activities A, F, B, D, and time factor 
CBA) the project duration uncertainty is reduced 
to 2.0 days. This effect is significant. If the dura-
tion of activities C and E is fixed then the project 
duration uncertainty is 4.0 days, i.e. its effect 
is marginal. On the other hand, if the duration 
of activities A and F is fixed the uncertainty is 
3.0 days, i.e. there is a significant effect. These 
simulations confirm that using the methods of 
Morris and Sobol’ allow to identify input factors 
that affect the uncertainty in the duration of the 
project and the control of uncertainty of these 
input factors allow to diminish the uncertainty in 
project duration.

The Monte Carlo simulation when all activity 
durations and time factors have uncertainties 
gives a mean value for the project duration of 
12.75 days, which is different from the value when 
the average value of the input factors are used 
(12.4 days). This is explained because when deter-
ministic values are used the interaction between 
input factors are not considered.

3. Conclusion
We have proposed using the Morris and Sobol’ 

methods in order to identify the input factor un-
certainty which is responsible for the uncertainty 
in project duration. The DSM-based scheduling 
proposed by Maheswari and Varghese (2005) was 
used to model de project duration based on the 
duration of the activities and the time factor asso-
ciated to activity overlapping. It was demonstrat-
ed that both methods can be used for this pur-
pose, however the Sobol´ method has shown to 

Project duration

No activity fixed A and F fixed D and E fixed C fixed

Minimum 12.41 13.15 12.74 12.53

1st Quartile 13.76 13.97 13.67 13.80

Median 14,16 14.19 14.03 14.20

Mean 14.16 14.19 14.02 14.19

3rd Quartile 14.52 14.47 14.39 14.59

Maximum 15.82 14.97 15.43 15.83

TABLE 1. Uncertainty analysis in project duration for various scenarios.
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be more adequate in the ranking of the input factors and the 
Morris method has shown to be more adequate for screen-
ing of input factors. It was demonstrated that the control or 
reduction in the uncertainty of the key activity duration can 
reduce the uncertainty in the project duration.

It is clear that for complex projects the problem of pro-
ject scheduling is far more extensive than just the duration 
of activities, it is also related to the issue of organizational 

structure, resource allocation and behaviors of stakeholders. 
Then, the identification of the key activities from the point 
of view of project duration can help to reduce the number of 
variables and simplify the schedule problem.

If the resources are limited, approximate uncertainty can 
be assigned to the duration of activity and time factor. After 
the key input factors are identified the resources can be allo-
cated to estimate the uncertainty of the key input factors.


