
KEYWORDS f Design structure matrices f Software architecture f Software application portfolio

r A B S T R A C T

In this paper, we test a Design Structure Matrix (DSM) based method for visualizing and

measuring software portfolio architectures. Our data is drawn from a power utility com-

pany, comprising 192 software applications with 614 dependencies between them. We

show that the architecture of this system can be classified as a “core-periphery” system,

meaning it contains a single large dominant cluster of interconnected components (the

“Core”) representing 40% of the system. The system has a propagation cost of 44% and

architecture flow through of 93%. This case and these findings add another piece of the

puzzle suggesting that the method could be effective in uncovering the hidden structure

in software portfolio architectures.

APPLICATION of clustering, simulation and optimization techniques

BLOCK 3

 SEPTEMBER – DECEMBER 2015 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 115SPECIAL ISSUE DSM CONFERENCE 2014

VISUALIZING
AND
MEASURING
SOFTWARE
PORTFOLIO
ARCHITECTURE:
A POWER UTILITY CASE

expensive. To help manage this complexity, firms
need a way to visualize and analyze the modulari-
ty of their software portfolio architectures as well
as the degree of coupling between components.

Baldwin et al. (2014) present a method to vis-
ualize the hidden structure of software architec-
tures based on Design Structure Matrices (DSMs)
and classic coupling measures. This method has
been demonstrated on individual software sys-
tems (such as Linux, Mozilla and Apache) but not
(to the same extent) on software portfolio archi-
tectures in which a large number of applications
have dependencies to each other (Lagerström et
al., 2013) and possibly relationships with other
types of components such as business groups
and/or infrastructure elements (Lagerström et
al., 2014a). In this paper, we apply Baldwin et.
al.’s architectural visualization and measurement
methods to enterprise wide applications, using
data collected by Cheraghi (2014) at a Nordic
power utility company. This data comprises 192
software applications and 614 dependencies be-
tween these applications.

We show that the Power Utility’s enterprise
architecture can be classified as core-periph-
ery. This means that 1) there is one cyclic group
(the “Core”) of components that is substantially
larger than others, and 2) this group comprises
a substantial portion of the entire architecture.
We find that the Core contains 76 components,
representing 40% of the architecture.

The remainder of this paper is structured as
follows: Section 2 presents related work; Section 3
describes the hidden structure method; Section 4
presents the power utility case used for the analy-
sis; Section 5 discusses the approach and outlines
future work; and Section 6 concludes the paper.

2. Related Work
Many software applications have grown into

large systems containing thousands of interde-
pendent components, making it difficult for a de-
signer to understand the complexity of the design.
As a result, much recent work on the visualization
and measurement of complex software systems
has focused on the use of network methods to
characterize system structure (Barabási, 2009).
Specifically, these methods emphasize identifying

the linkages (dependencies) that exist between
different elements (nodes) in the system (Simon,
1962). A key concept here is modularity, which
refers to the way in which a system’s architecture
can be decomposed into different parts. Although
there are many definitions of modularity, authors
tend to agree on the fundamental features: the
interdependence of decisions within modules, the
independence of decisions between modules, and
the hierarchical dependence of modules on com-
ponents that embody standards and design rules
(Baldwin and Clark, 2000).

Studies that use network methods to measure
modularity typically focus on capturing the level
of coupling that exists between different parts of
a system. The use of graph theory and network
measures to analyze software systems extends
back to the 1980s (Hall and Preiser, 1984). More
recently, a number of studies have used social net-
work measures to analyze software systems and
software development organizations (Dreyfus and
Wyner, 2011). Other studies make use of Design
Structure Matrices (DSMs), which highlight the
network structure of a complex system using a
square matrix (Sosa et al., 2007). DSMs have been
used widely to visualize the architecture of and
measure the coupling between the components of
individual software systems (MacCormack et al,
2012).

3. Method Description
The method we use for network representation

is based on and extends the classic notion of cou-
pling. Specifically, after identifying the coupling
(dependencies) between the elements in a com-
plex architecture, we analyze the architecture in
terms of hierarchical ordering and cyclic groups
and classify elements in terms of their position in
the resulting network (this method is described in
Baldwin et al, 2014).

In a Design Structure Matrix (DSM), each
diagonal cell represents an element (node), and
the off-diagonal cells record the dependencies
between the elements (links): If element i de-
pends on element j, a mark is placed in the row of
i and the column of j. The content of the matrix
does not depend on the ordering of the rows and
columns, but different orderings can reveal (or ob-

r Robert Lagerström
KTH Royal Institute
of Technology

robertl@kth.se

r Carliss Baldwin
Harvard Business School

CBaldwin@hbs.edu

r Alan MacCormack
Harvard Business School

amaccormack@hbs.edu

1. Introduction
Business environments are constantly evolving, requiring continual changes

to the software applications that support a business. Moreover, during recent
decades the sheer number of applications has grown significantly, and they have
become increasingly interdependent. As a result, the management of software
applications has become a complex task; many companies find that implementing
changes to their application portfolio architecture is increasingly difficult and

 SEPTEMBER – DECEMBER 2015 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 117116 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | SEPTEMBER – DECEMBER 2015

BLOCK#3 /// VISUALIZING AND MEASURING SOFTWARE PORTFOLIO ARCHITECTURE: A POWER UTILITY CASE

SPECIAL ISSUE DSM CONFERENCE 2014

scure) the underlying structure. Specifically,
the elements in the DSM can be arranged in
a way that reflects hierarchy, and, if this is
done, dependencies that remain above the
main diagonal will indicate the presence of
cyclic interdependencies (A depends on B,
and B depends on A). The rearranged DSM
can thus reveal significant facts about the
underlying structure of the architecture that
cannot be inferred from standard measures
of coupling. In the following subsections, a
method that makes this “hidden structure”
visible is presented.

3.1 Identify the direct dependencies
and compute the visibility matrix

The architecture of a complex system
can be represented as a directed network
composed of N elements (nodes) and direct-
ed dependencies (links) between them. This
DSM is called the “first-order” matrix. If
the first-order matrix is raised to successive
powers, the result will show the direct and
indirect dependencies that exist for succes-
sive path lengths. Summing these matrices
yields the visibility matrix V (Figure 1), which
denotes the dependencies that exist for all
possible path lengths. The values in the vis-
ibility matrix are constrained to be binary,
capturing only whether a dependency exists
and not the number of possible paths that
the dependency can take (MacCormack et
al., 2006). The matrix for n=0 (i.e., a path
length of zero) is included when calculating
the visibility matrix, implying that a change
to an element will always affect itself.

Several measures are constructed based
on the visibility matrix V. First, for each
element i in the architecture, the following
are defined:

ff VFI
i
 (Visibility Fan-In) is the number of elements

ff “Core” elements are members of the largest
cyclic group and have the same VFI and VFO,
denoted by VFIC and VFOC, respectively.

ff “Control” elements have VFI <
VFIC and VFO ≥ VFOC.

ff “Shared” elements have VFI ≥
VFIC and VFO < VFOC.

ff “Periphery” elements have VFI
< VFIC and VFO < VFOC.

Using the above classification scheme, a
reorganized DSM can be constructed that
reveals the “hidden structure” of the ar-
chitecture by placing elements in the order
Shared, Core, Periphery, and Control down
the main diagonal of the DSM, and then
sorting within each group by VFI descend-
ing then VFO ascending (cf. Figure 4).

The method for classifying architectures
into different types is discussed in empirical
work by (Baldwin et al., 2014). Specifically,
the authors find a large percentage of the ar-
chitectures they analyzed contained a large
cyclic group of components that was dom-
inant in two senses: i) it was large relative
to the number of elements in the system,
and ii) it was substantially larger than any
other cyclic group. This architectural type
is classified as “core-periphery.” Where
architectures have multiple cyclic groups of
similar size, the architecture is referred to
as “Multi-Core”. Finally, if the Core is small,
relative to the system as a whole, the archi-
tecture is referred to as “Hierarchical.”

4. Power Utility Case
We apply the method to a real-world

example of a software portfolio architec-
ture from a Nordic power utility company
investigated by (Cheraghi, 2014). The data
collected was stored in the company’s enter-
prise architecture tool/database. The subset
we are investigating are applications related
to what they refer to as their “smart grid”
applications. These are thus mostly techni-
cal systems supporting the power distribu-
tion process, but also some administrative
systems that have dependencies to and from
the smart grid architecture. FIGURE 1. A directed graph with the corresponding DSM and visibility matrix. FIGURE 2. The architecture classification scheme.

0 20 40 60 80 100 120 140 160 1800

20

40

60

80

100

120

140

160

180

Original DSM

Software
application DFI DFO VFI VFO Class.

SA1 2 1 122 1 Shared

SA2 2 1 8 1 Peripheral

SA3 3 2 121 133 Core

SA4 29 36 121 133 Core

SA5 4 4 121 133 Core

SA6 31 30 121 133 Core

SA7 2 2 3 134 Control

… … … … …

SA103 1 2 1 2 Peripheral

TABLE 1. A sample of Power Utility Fan-In and Fan-Outs.

FIGURE 3. Input Design Structure Matrix (DSM).

that directly or indirectly depend on i. This is
found by summing entries in the ith column of V.

ff VFO
i
 (Visibility Fan-Out) is the number of elements

that i directly or indirectly depends on. This is
found by summing entries in the ith row of V.

In Figure 1, element A has VFI equal to 1,
meaning that no other elements depend on it,
and VFO equal to 6, meaning that it depends on
all other elements in the architecture.

3.2 Identify and rank cyclic groups

The next step is to find the cyclic groups in
the architecture. By definition, each element
within a cyclic group depends directly or indi-
rectly on every other member of the group. First,
the elements are sorted, first by VFI descending
then by VFO ascending. Next one proceeds
through the sorted list, comparing the VFIs and
VFOs of adjacent elements. If the VFI and VFO
for two successive elements are the same, they
might be members of the same cyclic group.
Elements that have different VFIs or VFOs
cannot be members of the same cyclic group,
and elements for which ni=1 cannot be part of
a cyclic group at all. However elements with the
same VFI and VFO could be members of differ-
ent cyclic groups. In other words, disjoint cyclic
groups may, by coincidence, have the same visi-
bility measures. To determine whether a group
of elements with the same VFI and VFO is one
cyclic group (and not several), we simply inspect
the subset of the visibility matrix that includes
the rows and columns of the group in question
and no others. If this submatrix does not contain
zeros, the group is one cyclic group. Cyclic
groups found via this algorithm are referred to
as the “cores” of the system. The largest cyclic
group is defined as the “Core”. Once the Core is
identified, the other components in the architec-
ture can be classified into groups, as follows:

 SEPTEMBER – DECEMBER 2015 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 119118 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | SEPTEMBER – DECEMBER 2015

BLOCK#3 /// VISUALIZING AND MEASURING SOFTWARE PORTFOLIO ARCHITECTURE: A POWER UTILITY CASE

SPECIAL ISSUE DSM CONFERENCE 2014

4.1 Identifying the direct dependencies
between the architecture components

The Power Utility dataset contains 192 software applications and
614 dependencies. The components in the architecture are applica-
tions supporting; meter reading, meter data management, contact
and phone information, enterprise resource planning, enterprise
asset management, work clearance and shift communication, trading,
network information system, mobile workforce management, billing
and service invoicing, customer self service, customer information,
call center, BI data warehouse, distribution management, corporate
compliance, access control, SCADA, document management, energy
data management, project portfolio, sales, time and attendance cap-
turing, et cetera. The dependencies between these components are
information flows, e.g. Application A depends on information being
sent from Application B.

We can represent this architecture as a directed network, with
the architecture components as nodes and dependencies as links, and
convert that network into a DSM.

5. Discussion and Research
Outlook

As presented in (Baldwin et al., 2014), the
hidden structure method was designed based
on empirical regularity from cases investigating
large complex software systems. All those cases
were focused on one software system at a time,
independent of its surrounding environment, ana-
lyzing the dependencies between its source files.
In other words, that work considered the inter-
nal coupling of a system. In this paper, the same
method is tested on the dependencies between
software applications; i.e., the current work con-
siders the external coupling between applications.

For the Power Utility case, the method re-
vealed a hidden structure (thus presenting new
facts) similar to those cases on software archi-
tecture investigated in previous studies. And the
method also helped classify the architecture as
core-periphery using the same rules and bound-
aries as in the previous cases. We have now col-
lected a number of cases testing the method and
they all seem to point in the same direction. For
further cases see Lagerström et al. (2013; 2014a).

Compared to other complexity, coupling,
and modularity measures, the hidden structure
method considers not only the direct network
structure of an architecture but also takes into
consideration the indirect dependencies be-
tween applications. Both these features provide
important input for management decisions.
For instance, applications that are classified as
Periphery or Control are probably easier (and less
costly) to modify because of the lower probability
of a change spreading and affecting other applica-
tions. In contrast, applications that are classified
as Shared or Core are more difficult to modify be-
cause of the higher probability of changes spread-
ing to other applications. A first study indicating
this has been reported (see Lagerström et al.,
2014b). This information can be used in change
management, project planning, risk analysis, and
so on.

From Table 1, we see that software applications
1, 2, 3, 5, and 7 all have low Direct Fan-In (DFI)
and Direct Fan-Out (DFO) numbers. As such,
those applications might be considered as low
risk when implementing changes (compared to
application 4 and 6 which have high DFI and DFO
values). But if we also look at the Visibility Fan-In
(VFI) and Visibility Fan-Out (VFO) numbers,

which measure indirect dependencies, we see that
applications 3 and 5 both belong to the Core of
the architecture. Thus any change to one of those
might spread to many other applications (even
though they have few direct dependencies). The
same goes for application 1, which is classified
as Shared. Therefore, we argue that the hidden
structure method, which considers indirect de-
pendencies, provides more valuable information
for decision-making.

In our experience, we have found that many
companies working with enterprise modeling
have architecture blueprints that describe their
application portfolio. Often, these are described
using entity-relationship diagrams with boxes and
arrows. When the entire application architecture
is visualized using this type of model, the result
is often a chaotic, messy picture that is difficult to
interpret. Typically these models depict somewhat
of a “spaghetti” architecture, with many applica-
tions and dependencies. This representation can
be directly translated to the architect’s view DSM
(cf. Figure 3). But this visualization does not really
provide that much information either, other than
that applications are depending on each other
in a complex network. With this representation
(and the entity-relationship model), we can trace
a dependency between two applications, which
then can be used for decision-making (compare
with the discussion above on DFI/DFO versus VFI/
VFO measures). However, if we instead use the
hidden structure method and rearrange the DSM,
as in Figure 4, we can actually see what applica-
tions are considered to be Core, Shared, Control,
and Periphery. This gives us more insight about
the structure of the architecture. We found that
in the Power Utility Case the Core applications
are spread out across the business processes and
they vary between small, very specific tools to
large, central ERP systems and data warehouses.
Without the hidden structure method, an archi-
tect would have difficulty uncovering this type of
complex architecture. The feedback from the case
company was that they were surprised when pre-
sented with the results, both in terms of the Core
size and architecture classification, and in terms
of what systems that were found in the Core.

Measures such as the propagation cost, the
architecture flow through, and the size of the core
can be useful when trying to improve an architec-
ture. Future scenarios can be compared in terms
of these metrics.

A first step in future research is to test the
hidden structure method with more enterprise
application architectures. This will provide
valuable input either supporting the method as

0 20 40 60 80 100 120 140 160 1800

20

40

60

80

100

120

140

160

180

Rearranged DSM

Shared

Core

Periphery

Control

FIGURE 4. Power Utility rearranged DSM showing “first-order” dependencies.

From the DSM, we calcu-
late the Direct Fan-In (DFI)
and Direct Fan-Out (DFO)
measures by summing the rows
and columns for each element
respectively. The next step is to
derive the visibility matrix by
raising the first-order matrix to
successive powers and summing
the results. Then, Visibility Fan-
In (VFI) and Visibility Fan-Out
(VFO) measures were calculat-
ed by summing the rows and
columns for each element. See
Table 1 for a sample of the Fan-
In and Fan-Outs.

To identify cyclic groups,
we order the list of architectur-
al components based on VFI
descending and VFO ascending.
This revealed a number of pos-
sible cyclic groups (VFI=VFO).
By inspecting the visibility sub-
matrices, we eliminated groups
that had the same visibility
measures by coincidence. After
this procedure, we found the
largest cyclic group (the “Core”)
contained 76 components,
while the second largest cyclic
group contained only three.
The architecture is thus defined
as core-periphery (compare with
the architecture classification
scheme presented in Figure 2).
The Core makes up 40% of the
system, and is 25 times larger
than the next largest cyclic
group.

4.2 Classifying the
components and visualizing
the architecture

The next step was to classify
the remainder of the compo-
nents as Shared, Periphery, or
Control using the definitions
above. We found there were 57
Shared (30%), 76 Core (40%), 14
Peripheral (7%), and 23 Con-
trol (23%) components. Figure
4 shows the rearranged DSM,
with the blocks labeled accord-
ing to our classification.

 SEPTEMBER – DECEMBER 2015 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 121120 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | SEPTEMBER – DECEMBER 2015

BLOCK#3 /// VISUALIZING AND MEASURING SOFTWARE PORTFOLIO ARCHITECTURE: A POWER UTILITY CASE

SPECIAL ISSUE DSM CONFERENCE 2014

Baldwin, C. and Clark, K. (2000). Design Rules, Vol-
ume 1: The Power of Modularity. MIT Press.

Baldwin, C., MacCormack, A., and Rusnack, J.
(2014). Hidden structure: Using network methods
to map system architecture. Research Policy, Arti-
cle in Press. Accepted May 19 2014.

Barabási, A. (2009). Scale-free networks: A decade and
beyond. Science 325, 5939, 412-413.

Brown, N., et al. (2010). Managing technical debt in
software-reliant systems. In Proceedings of the
FSE/SDP Workshop on the Future of Software
Engineering Research (FoSeR’10), 47-52.

Cheraghi, D. (2014). Enterprise Application Architec-
ture: How companies can benefit from using the
Enterprise Architecture Analysis Tool. Bache-
lor thesis, Degree Project in Computer Science,
Communication and Industrial Management, KTH
Royal Institute of Technology.

Chidamber, S. R., and Kemerer, C. F. (1994). A met-
rics suite for object oriented design. IEEE Transac-
tions on Software Engineering 20, 6, 476-493.

Dreyfus D. and Wyner, G. (2011). Digital cement:
Software portfolio architecture, complexity, and
flexibility. In Proceedings of the Americas Confer-
ence on Information Systems (AMCIS), Association
for Information Systems.

Hall, N. R., and Preiser, S. (1984). Combined network
complexity measures. IBM journal of research and
development 28, 1, 15-27.

Lagerström, R., Baldwin, C., MacCormack, A., and
Dreyfus, D. (2013). Visualizing and Measuring
Enterprise Architecture: An Exploratory BioPhar-
ma Case. In Proc. of the 6th IFIP WG 8.1 Working
Conference on the Practice of Enterprise Modeling
(PoEM). Springer.

Lagerström, R., Baldwin, C., MacCormack, A., and
Aier, S. (2014a). Visualizing and Measuring En-
terprise Application Architecture: An Exploratory
Telecom Case. In Proc. of the Hawaii International
Conference on System Sciences (HICSS-47), IEEE.

Lagerström, R., Baldwin, C., MacCormack, A., &
Dreyfus, D. (2014b). Visualizing and Measuring
Software Portfolio Architecture: A Flexibility
Analysis. Risk and change management in complex
systems: Proceedings of the 16th International
DSM Conference.

MacCormack, A., Baldwin, C., and Rusnak, J. (2012).
Exploring the duality between product and organ-
izational architectures: A test of the “mirroring”
hypothesis. Research Policy 41, 8, 1309-1324.

Opsahl, T., Agneessens, F., and Skvoretz, J. (2010).
Node centrality in weighted networks: Generaliz-
ing degree and shortest paths. Social Networks 32,
3, 245-251.

Simon, H. A. (1962). The architecture of complexity.
American Philosophical Society 106, 6, 467-482.

Sosa, M., Eppinger, S., and Rowles, C. (2007). A net-
work approach to define modularity of components
in complex products. Transactions of the ASME
129, 1118-1129.

re
fe

re
nc

es

authors

r Robert Lagerström is Associate Professor in
Industrial Information Systems Architecture at KTH
Royal Institute of Technology, Stockholm Sweden.
He is also a visiting scholar at Harvard Business
School. Robert’s topics of interest include Enterprise
Architecture, software applications modifiability and
complexity, and cyber security. He is responsible for

the IT Management with Enterprise Architecture education at KTH.
In addition to that he supervises PhD students and master thesis
projects. Robert has written more than 50 academic publications
(journals, conferences, and workshops), also he is a co-author of the
book IT Management with Enterprise Architecture. Robert is one
of the founders and board members of the KTH spin-off company
foreseeti AB, where he also works as an expert. Foreseeti develops
and sells an “IT CAD Tool” for proactive cyber security management.

r Alan MacCormack is the MBA Class of 1949
Adjunct Professor of Business Administration at
Harvard Business School. His research examines the
management of innovation, technology and new
product development in high-technology indus-
tries, with a particular focus on the software sector.
Alan’s research has been published in a variety of

leading journals including Management Science, Research Policy
and Harvard Business Review. In addition, he has written over 50
cases and notes that explore how organizations like Intel, Microsoft
and NASA effectively manage innovation. Alan currently teaches

FIELD, a new MBA course that develops students’ teamwork and
leadership abilities through solving real world problems in small
project-based teams. In 2013, he received the Greenhill Award, for
his role in developing this course. Alan holds a DBA from Harvard
Business School, an MSc from MIT’s Sloan School of Management
and a BSc from the University of Bath in England.

r Carliss Baldwin is the William l. White Professor
of Business Administration at the Harvard Business
School. She studies the process of design and the
impact of design architecture on firm strategy,
platforms and business ecosystems. With Kim Clark,
she authored Design Rules, Volume 1: The Power of
Modularity. Her work has been published in a variety

of leading journals including Strategic Management Journal, Organi-
zation Science, Management Science, Research Policy and Harvard
Business Review. She has won numerous awards for research, and
was awarded a Doctor honoris causa by the Technical University
Munich in 2014. Carliss teaches Finance 2, an MBA Required-Curric-
ulum course in corporate finance. Before teaching Finance 2, she
developed and taught an Elective course on Mergers & Acquistions.
She has written over 50 cases and notes for MBA classes. In 2014,
her case on Roche’s Acquisition of Genentech was named the best
case in Finance, Accounting and Control by the Case Centre. Carliss
has a Doctorate and MBA from Harvard Business School, and an SB
in Economics from MIT. She studied finance under Robert C. Merton,
Franco Modigliani, and John Lintner.

currently constructed or with improvement suggestions
for future versions. Another step would be to extend the
application area. Future research could involve tests with
more “complete” enterprise architecture models, consid-
ering many different types of elements such as business
processes and roles, software applications and services,
and databases and servers. One hypothesis is that busi-
ness layer elements typically are classified as Control,
infrastructure elements as Shared, and software elements
as Core. This, however, remains to be tested (a first indi-
cation of this is reported in Lagerström et al., 2013). If the
hidden structure method does enable the useful visuali-
zation and classification of complete enterprise architec-
ture descriptions (including layer between different object
groups), then it could be deployed to analyze the quality of
a particular architecture and possibly help improve that
quality in terms of the removal or addition of elements
and dependencies.

Both in the previous work by Baldwin et al. and in
this case, it can be seen that many architectures have a
single large Core. A limitation of the hidden structure
method is that it only shows which elements (in this case,
software applications) belong to the Core but does not
help in describing the structure of that Core. Thus, future
research might extend the hidden structure method with
a sub-method for that purpose. That sub-method could
help identify the elements within the Core that are most
important in terms of dependencies and cluster growth.
The hypothesis is that there are some elements in a Core
that bind the group together or that make the group grow
faster. As such, removing these elements or reducing their
dependencies (either to or from them) may decrease the
size of the Core and thus the complexity of the architec-
ture. Identifying these elements also helps pinpoint where
the Core is most sensitive to change.

We have also seen in previous work with enterprise
application architectures that these often contain non-di-
rected dependencies, thus forming symmetric matrices
that have special properties and behave differently than
those matrices containing directed dependencies. This
could, for instance, be due to the nature of the link itself
(as in social networks) or, as in most cases we have seen,
due to imprecision in data (often because of the high costs
of data collection). For companies, the primary concern
is whether two applications are connected. The direction
of the dependency is secondary. In one of our cases, the
company had more than a thousand software applications
but did not have an architecture model or application
portfolio describing those applications. For that firm,
collecting information about what applications it had and
what those applications did was of primary importance.
That process was costly enough, and consequently the
directions of the dependencies between the applications
were not a priority.

A lack of tool support is one reason for the high costs
associated with data collection. In prior the work of

Baldwin et al. (2014), the analysis of internal coupling in a
software system was supported by a tool that explored the
source files and created a dependency graph automatical-
ly. In the enterprise architecture domain, however, such
useful practical tools generally do not exist. Consequent-
ly, data collection requires considerable time. The most
common methods are interviews and surveys of people
(often managers) with already busy schedules. As such,
future work needs to be directed towards data collection
support in the enterprise architecture domain.

For the hidden structure method to be useful in
practice, it needs to be incorporated into existing or
future enterprise architecture tools. Most companies
today already use modeling tools like Rational System
Architect, BiZZdesign Architect, TrouxView, ARIS 9,
and MooD Business Architect to describe their enter-
prise architecture. Thus, having a stand-alone tool that
supports the hidden structure method is not feasible or
very cost efficient. Moreover, if the method is integrated
with current tools, companies can then perform a hidden
structure analysis by re-using their existing architecture
descriptions.

Last, but not least, the most important future work
is to test the VFI/VFO metrics and the element classifi-
cation (Shared, Core, Periphery, and Core) with perfor-
mance outcome metrics, such as change cost (Lagerström
et al., 2014b) and incidents or defects. Doing so will help
prove that the method is actually useful in architectur-
al work. Currently, we can argue its benefits only with
respect to other existing methods.

6. Conclusions
Although our method is used only in the one case

presented in this paper and few other cases previously
(Lagerström et al., 2013; Lagerström et al., 2014a), the
results suggest that it can reveal new facts about the
architecture structure on an enterprise application level,
equal to past results in the initial cases of single software
system (Baldwin et al., 2014). The analysis reveals that the
hidden external structure of the software applications at
the Power Utility can be classified as core-periphery with
a propagation cost of 44%, architecture flow through of
93%, and core size of 40%. For the Power Utility, the ar-
chitectural visualization and the computed coupling met-
rics provide valuable input when planning architectural
change projects (in terms of, for example, risk analysis
and resource planning).

