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In this paper, we test a Design Structure Matrix (DSM) based method for visualizing and 

measuring software portfolio architectures. Our data is drawn from a power utility com-

pany, comprising 192 software applications with 614 dependencies between them.  We 

show that the architecture of this system can be classified as a “core-periphery” system, 

meaning it contains a single large dominant cluster of interconnected components (the 

“Core”) representing 40% of the system. The system has a propagation cost of 44% and 

architecture flow through of 93%. This case and these findings add another piece of the 

puzzle suggesting that the method could be effective in uncovering the hidden structure 

in software portfolio architectures.

APPLICATION of clustering, simulation and optimization techniques

BLOCK 3
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expensive.  To help manage this complexity, firms 
need a way to visualize and analyze the modulari-
ty of their software portfolio architectures as well 
as the degree of coupling between components.

Baldwin et al. (2014) present a method to vis-
ualize the hidden structure of software architec-
tures based on Design Structure Matrices (DSMs) 
and classic coupling measures. This method has 
been demonstrated on individual software sys-
tems (such as Linux, Mozilla and Apache) but not 
(to the same extent) on software portfolio archi-
tectures in which a large number of applications 
have dependencies to each other (Lagerström et 
al., 2013) and possibly relationships with other 
types of components such as business groups 
and/or infrastructure elements (Lagerström et 
al., 2014a). In this paper, we apply Baldwin et. 
al.’s architectural visualization and measurement 
methods to enterprise wide applications, using 
data collected by Cheraghi (2014) at a Nordic 
power utility company.  This data comprises 192 
software applications and 614 dependencies be-
tween these applications.

We show that the Power Utility’s enterprise 
architecture can be classified as core-periph-
ery.  This means that 1) there is one cyclic group 
(the “Core”) of components that is substantially 
larger than others, and 2) this group comprises 
a substantial portion of the entire architecture.  
We find that the Core contains 76 components, 
representing 40% of the architecture.

The remainder of this paper is structured as 
follows: Section 2 presents related work; Section 3 
describes the hidden structure method; Section 4 
presents the power utility case used for the analy-
sis; Section 5 discusses the approach and outlines 
future work; and Section 6 concludes the paper.

2. Related Work
Many software applications have grown into 

large systems containing thousands of interde-
pendent components, making it difficult for a de-
signer to understand the complexity of the design. 
As a result, much recent work on the visualization 
and measurement of complex software systems 
has focused on the use of network methods to 
characterize system structure (Barabási, 2009). 
Specifically, these methods emphasize identifying 

the linkages (dependencies) that exist between 
different elements (nodes) in the system (Simon, 
1962). A key concept here is modularity, which 
refers to the way in which a system’s architecture 
can be decomposed into different parts. Although 
there are many definitions of modularity, authors 
tend to agree on the fundamental features: the 
interdependence of decisions within modules, the 
independence of decisions between modules, and 
the hierarchical dependence of modules on com-
ponents that embody standards and design rules 
(Baldwin and Clark, 2000).

Studies that use network methods to measure 
modularity typically focus on capturing the level 
of coupling that exists between different parts of 
a system.  The use of graph theory and network 
measures to analyze software systems extends 
back to the 1980s (Hall and Preiser, 1984). More 
recently, a number of studies have used social net-
work measures to analyze software systems and 
software development organizations (Dreyfus and 
Wyner, 2011).  Other studies make use of Design 
Structure Matrices (DSMs), which highlight the 
network structure of a complex system using a 
square matrix (Sosa et al., 2007). DSMs have been 
used widely to visualize the architecture of and 
measure the coupling between the components of 
individual software systems (MacCormack et al, 
2012).

3. Method Description
The method we use for network representation 

is based on and extends the classic notion of cou-
pling. Specifically, after identifying the coupling 
(dependencies) between the elements in a com-
plex architecture, we analyze the architecture in 
terms of hierarchical ordering and cyclic groups 
and classify elements in terms of their position in 
the resulting network (this method is described in 
Baldwin et al, 2014).

In a Design Structure Matrix (DSM), each 
diagonal cell represents an element (node), and 
the off-diagonal cells record the dependencies 
between the elements (links): If element i de-
pends on element j, a mark is placed in the row of 
i and the column of j. The content of the matrix 
does not depend on the ordering of the rows and 
columns, but different orderings can reveal (or ob-
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1. Introduction
Business environments are constantly evolving, requiring continual changes 

to the software applications that support a business. Moreover, during recent 
decades the sheer number of applications has grown significantly, and they have 
become increasingly interdependent. As a result, the management of software 
applications has become a complex task; many companies find that implementing 
changes to their application portfolio architecture is increasingly difficult and 
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scure) the underlying structure. Specifically, 
the elements in the DSM can be arranged in 
a way that reflects hierarchy, and, if this is 
done, dependencies that remain above the 
main diagonal will indicate the presence of 
cyclic interdependencies (A depends on B, 
and B depends on A). The rearranged DSM 
can thus reveal significant facts about the 
underlying structure of the architecture that 
cannot be inferred from standard measures 
of coupling. In the following subsections, a 
method that makes this “hidden structure” 
visible is presented.

3.1 Identify the direct dependencies 
and compute the visibility matrix

The architecture of a complex system 
can be represented as a directed network 
composed of N elements (nodes) and direct-
ed dependencies (links) between them. This 
DSM is called the “first-order” matrix.  If 
the first-order matrix is raised to successive 
powers, the result will show the direct and 
indirect dependencies that exist for succes-
sive path lengths. Summing these matrices 
yields the visibility matrix V (Figure 1), which 
denotes the dependencies that exist for all 
possible path lengths. The values in the vis-
ibility matrix are constrained to be binary, 
capturing only whether a dependency exists 
and not the number of possible paths that 
the dependency can take (MacCormack et 
al., 2006). The matrix for n=0 (i.e., a path 
length of zero) is included when calculating 
the visibility matrix, implying that a change 
to an element will always affect itself.

Several measures are constructed based 
on the visibility matrix V. First, for each 
element i in the architecture, the following 
are defined:

ff VFI
i
 (Visibility Fan-In) is the number of elements 

ff “Core” elements are members of the largest 
cyclic group and have the same VFI and VFO, 
denoted by VFIC and VFOC, respectively.

ff “Control” elements have VFI < 
VFIC and VFO ≥ VFOC.

ff “Shared” elements have VFI ≥ 
VFIC and VFO < VFOC.

ff “Periphery” elements have VFI 
< VFIC and VFO < VFOC.

Using the above classification scheme, a 
reorganized DSM can be constructed that 
reveals the “hidden structure” of the ar-
chitecture by placing elements in the order 
Shared, Core, Periphery, and Control down 
the main diagonal of the DSM, and then 
sorting within each group by VFI descend-
ing then VFO ascending (cf. Figure 4).

The method for classifying architectures 
into different types is discussed in empirical 
work by (Baldwin et al., 2014). Specifically, 
the authors find a large percentage of the ar-
chitectures they analyzed contained a large 
cyclic group of components that was dom-
inant in two senses: i) it was large relative 
to the number of elements in the system, 
and ii) it was substantially larger than any 
other cyclic group. This architectural type 
is classified as “core-periphery.”  Where 
architectures have multiple cyclic groups of 
similar size, the architecture is referred to 
as “Multi-Core”.  Finally, if the Core is small, 
relative to the system as a whole, the archi-
tecture is referred to as “Hierarchical.” 

4. Power Utility Case
We apply the method to a real-world 

example of a software portfolio architec-
ture from a Nordic power utility company 
investigated by (Cheraghi, 2014). The data 
collected was stored in the company’s enter-
prise architecture tool/database. The subset 
we are investigating are applications related 
to what they refer to as their “smart grid” 
applications. These are thus mostly techni-
cal systems supporting the power distribu-
tion process, but also some administrative 
systems that have dependencies to and from 
the smart grid architecture. FIGURE 1. A directed graph with the corresponding DSM and visibility matrix. FIGURE 2. The architecture classification scheme.
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SA1 2 1 122 1 Shared

SA2 2 1 8 1 Peripheral

SA3 3 2 121 133 Core

SA4 29 36 121 133 Core

SA5 4 4 121 133 Core

SA6 31 30 121 133 Core

SA7 2 2 3 134 Control

… … … … …

SA103 1 2 1 2 Peripheral

TABLE 1. A sample of Power Utility Fan-In and Fan-Outs.

FIGURE 3. Input Design Structure Matrix (DSM).

that directly or indirectly depend on i. This is 
found by summing entries in the ith column of V.

ff VFO
i
 (Visibility Fan-Out) is the number of elements 

that i directly or indirectly depends on. This is 
found by summing entries in the ith row of V.

In Figure 1, element A has VFI equal to 1, 
meaning that no other elements depend on it, 
and VFO equal to 6, meaning that it depends on 
all other elements in the architecture.

3.2 Identify and rank cyclic groups

The next step is to find the cyclic groups in 
the architecture. By definition, each element 
within a cyclic group depends directly or indi-
rectly on every other member of the group. First, 
the elements are sorted, first by VFI descending 
then by VFO ascending. Next one proceeds 
through the sorted list, comparing the VFIs and 
VFOs of adjacent elements. If the VFI and VFO 
for two successive elements are the same, they 
might be members of the same cyclic group. 
Elements that have different VFIs or VFOs 
cannot be members of the same cyclic group, 
and elements for which ni=1 cannot be part of 
a cyclic group at all. However elements with the 
same VFI and VFO could be members of differ-
ent cyclic groups. In other words, disjoint cyclic 
groups may, by coincidence, have the same visi-
bility measures. To determine whether a group 
of elements with the same VFI and VFO is one 
cyclic group (and not several), we simply inspect 
the subset of the visibility matrix that includes 
the rows and columns of the group in question 
and no others. If this submatrix does not contain 
zeros, the group is one cyclic group.  Cyclic 
groups found via this algorithm are referred to 
as the “cores” of the system. The largest cyclic 
group is defined as the “Core”. Once the Core is 
identified, the other components in the architec-
ture can be classified into groups, as follows:
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4.1 Identifying the direct dependencies 
between the architecture components

The Power Utility dataset contains 192 software applications and 
614 dependencies. The components in the architecture are applica-
tions supporting; meter reading, meter data management, contact 
and phone information, enterprise resource planning, enterprise 
asset management, work clearance and shift communication, trading, 
network information system, mobile workforce management, billing 
and service invoicing, customer self service, customer information, 
call center, BI data warehouse, distribution management, corporate 
compliance, access control, SCADA, document management, energy 
data management, project portfolio, sales, time and attendance cap-
turing, et cetera. The dependencies between these components are 
information flows, e.g. Application A depends on information being 
sent from Application B.

We can represent this architecture as a directed network, with 
the architecture components as nodes and dependencies as links, and 
convert that network into a DSM. 

5. Discussion and Research
Outlook

As presented in (Baldwin et al., 2014), the 
hidden structure method was designed based 
on empirical regularity from cases investigating 
large complex software systems. All those cases 
were focused on one software system at a time, 
independent of its surrounding environment, ana-
lyzing the dependencies between its source files. 
In other words, that work considered the inter-
nal coupling of a system. In this paper, the same 
method is tested on the dependencies between 
software applications; i.e., the current work con-
siders the external coupling between applications.

For the Power Utility case, the method re-
vealed a hidden structure (thus presenting new 
facts) similar to those cases on software archi-
tecture investigated in previous studies. And the 
method also helped classify the architecture as 
core-periphery using the same rules and bound-
aries as in the previous cases. We have now col-
lected a number of cases testing the method and 
they all seem to point in the same direction. For 
further cases see Lagerström et al. (2013; 2014a).

Compared to other complexity, coupling, 
and modularity measures, the hidden structure 
method considers not only the direct network 
structure of an architecture but also takes into 
consideration the indirect dependencies be-
tween applications. Both these features provide 
important input for management decisions. 
For instance, applications that are classified as 
Periphery or Control are probably easier (and less 
costly) to modify because of the lower probability 
of a change spreading and affecting other applica-
tions. In contrast, applications that are classified 
as Shared or Core are more difficult to modify be-
cause of the higher probability of changes spread-
ing to other applications. A first study indicating 
this has been reported (see Lagerström et al., 
2014b). This information can be used in change 
management, project planning, risk analysis, and 
so on.

From Table 1, we see that software applications 
1, 2, 3, 5, and 7 all have low Direct Fan-In (DFI) 
and Direct Fan-Out (DFO) numbers. As such, 
those applications might be considered as low 
risk when implementing changes (compared to 
application 4 and 6 which have high DFI and DFO 
values). But if we also look at the Visibility Fan-In 
(VFI) and Visibility Fan-Out (VFO) numbers, 

which measure indirect dependencies, we see that 
applications 3 and 5 both belong to the Core of 
the architecture. Thus any change to one of those 
might spread to many other applications (even 
though they have few direct dependencies). The 
same goes for application 1, which is classified 
as Shared. Therefore, we argue that the hidden 
structure method, which considers indirect de-
pendencies, provides more valuable information 
for decision-making.

In our experience, we have found that many 
companies working with enterprise modeling 
have architecture blueprints that describe their 
application portfolio. Often, these are described 
using entity-relationship diagrams with boxes and 
arrows. When the entire application architecture 
is visualized using this type of model, the result 
is often a chaotic, messy picture that is difficult to 
interpret. Typically these models depict somewhat 
of a “spaghetti” architecture, with many applica-
tions and dependencies. This representation can 
be directly translated to the architect’s view DSM 
(cf. Figure 3). But this visualization does not really 
provide that much information either, other than 
that applications are depending on each other 
in a complex network. With this representation 
(and the entity-relationship model), we can trace 
a dependency between two applications, which 
then can be used for decision-making (compare 
with the discussion above on DFI/DFO versus VFI/
VFO measures). However, if we instead use the 
hidden structure method and rearrange the DSM, 
as in Figure 4, we can actually see what applica-
tions are considered to be Core, Shared, Control, 
and Periphery. This gives us more insight about 
the structure of the architecture. We found that 
in the Power Utility Case the Core applications 
are spread out across the business processes and 
they vary between small, very specific tools to 
large, central ERP systems and data warehouses. 
Without the hidden structure method, an archi-
tect would have difficulty uncovering this type of 
complex architecture. The feedback from the case 
company was that they were surprised when pre-
sented with the results, both in terms of the Core 
size and architecture classification, and in terms 
of what systems that were found in the Core. 

Measures such as the propagation cost, the 
architecture flow through, and the size of the core 
can be useful when trying to improve an architec-
ture. Future scenarios can be compared in terms 
of these metrics.

A first step in future research is to test the 
hidden structure method with more enterprise 
application architectures. This will provide 
valuable input either supporting the method as 
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FIGURE 4. Power Utility rearranged DSM showing “first-order” dependencies.

From the DSM, we calcu-
late the Direct Fan-In (DFI) 
and Direct Fan-Out (DFO) 
measures by summing the rows 
and columns for each element 
respectively.  The next step is to 
derive the visibility matrix by 
raising the first-order matrix to 
successive powers and summing 
the results. Then, Visibility Fan-
In (VFI) and Visibility Fan-Out 
(VFO) measures were calculat-
ed by summing the rows and 
columns for each element. See 
Table 1 for a sample of the Fan-
In and Fan-Outs.

To identify cyclic groups, 
we order the list of architectur-
al components based on VFI 
descending and VFO ascending. 
This revealed a number of pos-
sible cyclic groups (VFI=VFO).  
By inspecting the visibility sub-
matrices, we eliminated groups 
that had the same visibility 
measures by coincidence. After 
this procedure, we found the 
largest cyclic group (the “Core”) 
contained 76 components, 
while the second largest cyclic 
group contained only three.  
The architecture is thus defined 
as core-periphery (compare with 
the architecture classification 
scheme presented in Figure 2). 
The Core makes up 40% of the 
system, and is 25 times larger 
than the next largest cyclic 
group.

4.2 Classifying the 
components and visualizing 
the architecture

The next step was to classify 
the remainder of the compo-
nents as Shared, Periphery, or 
Control using the definitions 
above. We found there were 57 
Shared (30%), 76 Core (40%), 14 
Peripheral (7%), and 23 Con-
trol (23%) components. Figure 
4 shows the rearranged DSM, 
with the blocks labeled accord-
ing to our classification.
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currently constructed or with improvement suggestions 
for future versions. Another step would be to extend the 
application area. Future research could involve tests with 
more “complete” enterprise architecture models, consid-
ering many different types of elements such as business 
processes and roles, software applications and services, 
and databases and servers. One hypothesis is that busi-
ness layer elements typically are classified as Control, 
infrastructure elements as Shared, and software elements 
as Core. This, however, remains to be tested (a first indi-
cation of this is reported in Lagerström et al., 2013). If the 
hidden structure method does enable the useful visuali-
zation and classification of complete enterprise architec-
ture descriptions (including layer between different object 
groups), then it could be deployed to analyze the quality of 
a particular architecture and possibly help improve that 
quality in terms of the removal or addition of elements 
and dependencies.

Both in the previous work by Baldwin et al. and in 
this case, it can be seen that many architectures have a 
single large Core. A limitation of the hidden structure 
method is that it only shows which elements (in this case, 
software applications) belong to the Core but does not 
help in describing the structure of that Core. Thus, future 
research might extend the hidden structure method with 
a sub-method for that purpose. That sub-method could 
help identify the elements within the Core that are most 
important in terms of dependencies and cluster growth. 
The hypothesis is that there are some elements in a Core 
that bind the group together or that make the group grow 
faster. As such, removing these elements or reducing their 
dependencies (either to or from them) may decrease the 
size of the Core and thus the complexity of the architec-
ture. Identifying these elements also helps pinpoint where 
the Core is most sensitive to change.

We have also seen in previous work with enterprise 
application architectures that these often contain non-di-
rected dependencies, thus forming symmetric matrices 
that have special properties and behave differently than 
those matrices containing directed dependencies. This 
could, for instance, be due to the nature of the link itself 
(as in social networks) or, as in most cases we have seen, 
due to imprecision in data (often because of the high costs 
of data collection). For companies, the primary concern 
is whether two applications are connected. The direction 
of the dependency is secondary. In one of our cases, the 
company had more than a thousand software applications 
but did not have an architecture model or application 
portfolio describing those applications. For that firm, 
collecting information about what applications it had and 
what those applications did was of primary importance. 
That process was costly enough, and consequently the 
directions of the dependencies between the applications 
were not a priority.

A lack of tool support is one reason for the high costs 
associated with data collection. In prior the work of 

Baldwin et al. (2014), the analysis of internal coupling in a 
software system was supported by a tool that explored the 
source files and created a dependency graph automatical-
ly. In the enterprise architecture domain, however, such 
useful practical tools generally do not exist. Consequent-
ly, data collection requires considerable time. The most 
common methods are interviews and surveys of people 
(often managers) with already busy schedules. As such, 
future work needs to be directed towards data collection 
support in the enterprise architecture domain.

For the hidden structure method to be useful in 
practice, it needs to be incorporated into existing or 
future enterprise architecture tools. Most companies 
today already use modeling tools like Rational System 
Architect, BiZZdesign Architect, TrouxView, ARIS 9, 
and MooD Business Architect to describe their enter-
prise architecture. Thus, having a stand-alone tool that 
supports the hidden structure method is not feasible or 
very cost efficient. Moreover, if the method is integrated 
with current tools, companies can then perform a hidden 
structure analysis by re-using their existing architecture 
descriptions.

Last, but not least, the most important future work 
is to test the VFI/VFO metrics and the element classifi-
cation (Shared, Core, Periphery, and Core) with perfor-
mance outcome metrics, such as change cost (Lagerström 
et al., 2014b) and incidents or defects. Doing so will help 
prove that the method is actually useful in architectur-
al work. Currently, we can argue its benefits only with 
respect to other existing methods.

6. Conclusions
Although our method is used only in the one case 

presented in this paper and few other cases previously 
(Lagerström et al., 2013; Lagerström et al., 2014a), the 
results suggest that it can reveal new facts about the 
architecture structure on an enterprise application level, 
equal to past results in the initial cases of single software 
system (Baldwin et al., 2014). The analysis reveals that the 
hidden external structure of the software applications at 
the Power Utility can be classified as core-periphery with 
a propagation cost of 44%, architecture flow through of 
93%, and core size of 40%. For the Power Utility, the ar-
chitectural visualization and the computed coupling met-
rics provide valuable input when planning architectural 
change projects (in terms of, for example, risk analysis 
and resource planning).


