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1. Introduction

Many companies are trying
to not only provide customers
with differentiated products
on time but also reduce costs.
Product planning and develop-
ment strategies focused on sin-
gle products can be ineffective
from a product family point of
view. Product planning, devel-
opment, and production based
on modular product platforms
are known to provide a compet-
itive strategy for reducing total
cost as well as shortening time
to market.

Defining modules and the
modular product architecture is
a key step in a modular platform
definition process (Otto et al.,
2013). After the 1990s, various
methods to define modules
for product families have been
widely studied (Gershenson
et al., 2004; Otto et al., 2013;
Simpson, 2004). Particular-
ly, many module definition

methods were focused on ma-
trix-based approaches because
using a matrix such as the
Design Structure Matrix (DSM)
(Browning, 2001; Eppinger and
Browning, 2012; Steward, 1981)
is an effective way to represent
and visualize the relationships
between elements within a
product architecture. In recent
years, clustering algorithms
using DSMs and numerical
heuristic methods have been
actively studied to cluster the el-
ements within a product archi-
tecture into modules (Borjesson
and Holttd-Otto, 2012; Helmer
et al., 2010; Thebeau, 2001; Yu et
al., 2003; Yu et al., 2007).

Most clustering algorithms
utilize a measure to assess the
degree of modularity, and the
modularity measure is usually
used as the objective function
of the clustering algorithm.
Guo and Gershenson (2003)
and Gershenson et al. (2004)
reviewed various modularity
measures. Guo and Gershenson
(2004) also introduced a mod-

ularity metric that maximize
connections within a module
and minimize the connectivity
between modules simultane-
ously, but it is not suitable to
use this metric directly as an
objective function for clustering
DSMs.

Fernandez (1998) and
Thebeau (2001) developed a
clustering method using the
modularity metric called total
coordination cost to mini-
mize the interactions between
clusters and to maximize the
interactions within clusters.
Borjesson and Holtti-Otto
(2012) improved Thebeau’s
clustering algorithm to obtain
useful clustering results more
quickly. However, the clustering
algorithm of Thebeau is known
to sometimes produce too many
small clusters, which cannot
constitute a module (van Beek et
al., 2010).

Holtta-Otto and de Weck
(2007) introduced two types
of modularity indices: (1) the
singular value modularity index
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(SMI) to capture the degree of
the closeness to the diagonal
of DSM and (2) the non-zero
fraction (NZF) to capture the
sparsity of the interrelationships
between components. These
modularity indices are theoret-
ically bounded between 0 and
1 regardless of the size of DSM,
but they cannot be directly used
as the objective functions for
clustering DSM. This is because
the SMI value of a DSM is con-
stant even though the sequence
of components within the DSM
is changed.

Yu et al. (2003, 2007) suggest
a modularity measure using
the minimum description
length (MDL) principle (Ris-
sanen, 1978, 1999) to mini-
mize the information needed
to describe the connectivity
between modules. Helmer et
al. (2010) improved Yu et al.’s
clustering algorithm in order
to overcome the deficiencies
such as excessively overlapped
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components between clusters.
The modularity measure based
on the MDL principle is known
to be a useful objective function
for clustering DSMs to drive
module definition, but the value
of this measure increases with
the DSM size, making it difficult
to compare modularity between
modular architectures of differ-
ent sizes.

Meanwhile, in recent years,
genetic algorithms (GAs) have
been used for the purpose of
clustering DSMs (Helmer et
al., 2010; Kamrani and Gon-
zalez, 2003; Whitfield et al.,
2002; Yu et al., 2007). This is
mainly because GAs can handle
discrete design variables and are
far more likely to find a global
optimum because they widely
explore the entire design space.
However, existing GAs for
clustering are known to reach
to the optimum solution slowly
because the GAs are based on
binary coding and the chromo-
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some lengths of the GAs might
be extremely extended accord-
ing to the number of compo-
nents or the number of modules
(Borjesson and Holttd-Otto,
2012; Yu et al., 2007).

After reviewing the exist-
ing modularity measures and
clustering algorithms in the
literature, we propose new mod-
ularity indices that overcome
the deficiencies of the previous
modularity measures, and a new
search strategy for clustering is
suggested. In this paper, Section
2 describes the modularity
indices and the proposed GA
using a new extended chromo-
some approach and modified
operators for the chromosome.
Section 3 presents the module
definition result of a real-world
product to demonstrate the
effectiveness of the proposed
method. Finally, Section 4 pre-
sents some conclusions.
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2. Clustering Algorithm

2.1 Modularity Indices

We introduce simple new metrics that can be
used as objective functions for optimizing DSMs
and also utilized as modularity indices obtained
between 0 and 1. The modularity index MI, meas-
ures the proximity of component interactions to
the diagonal of a DSM:
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where DSM,; is the value of the ith row and jth
column element in DSM; DSM _is the maximum
interaction value within DSM; and N represents
the total number of components. The value of M1,
is always between 0 and 1 regardless of the size
of the DSM. As shown in Figure 1(a), a MI, value
close to 1 denotes that the interactions are near
the diagonal of the DSM. Thus, M1, should be
maximized to be close to 1 when M1, is utilized as
an objective function for clustering DSMs. By do-
ing so, the DSM clustered maximizing MI, shows
which components should be arranged around a
component within a module. Also, one can know
which components are placed near the module
boundary. For example, if there exists the interac-
tion between two components contained within
two different modules respectively, then the two
components are arranged near the boundaries of
each module so that they can be placed near each
other. The sequence information of components
within each module can also be utilized to archi-
tect product families that contain shared compo-
nents and modules based on this clustering.

MI, represents a modularity index for the
independency of each module. M1, is formulated
as follows:

H j-i )D%@+D&wﬂ

] @

FIGURE 1. MI, and MI, values for interaction patterns of DSMs
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where CS}" is the sum of interaction values with-
in ith modules; CS;M is the sum of interactions
between ith and jth modules; m is the number of
modules; and ¢ is a very small positive number. As
shown in Figure 1(b), M1, is usually bounded be-
tween 0 and 1. M1, closer to 0.0 indicates a higher
degree of the module independency. In Figure
1(b), a large dot within a DSM represents a greater
interaction value than a small dot. In some cases,
MI, might be greater than 1 if the sum of the
interaction values between modules is greater
than the sum of the interactions between compo-
nents within a module. In Equation (2), ¢(N-m) is
utilized to obtain the clustering result including
more divided modules among the clustering re-
sults with the same M1, values when the proposed
modularity indices are used as the objective
functions for optimizing DSMs. € is usually set as
a sufficiently small positive number such as 10,

The proposed modularity indices can be uti-
lized as the objective functions when optimizing
DSMs. Since we should maximize MI, and min-
imize MI, simultaneously to reach an optimized
clustering result, a scalarization function was
employed to formulate the optimization problem
as follows:

M,
T

1

By using Equation (3) as the fitness function of
the proposed GA, we can obtain optimal DSMs
including the maximized interactions within
modules and the minimized interactions between
modules.

2.2 Genetic Algorithm

This section introduces a search strategy using
a genetic algorithm (GA) for clustering DSMs.

(B) MI_
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To reduce the computation time of
the GA, we developed a GA using an
extended chromosome approach and
modified operators for the chromo-
some.

In this study, the extended direct
encoding chromosome, which can hold
two kinds of information in a single
chromosome, is defined based on a
method suggested by Jung et al. (2013).
We modified their chromosome defini-
tion method in order for each chro-
mosome to have the same string size.
The extended chromosome consists of
two parts. The first part of the chromo-
some includes the information on the
sequence of each component, and the
second part holds the information on
the dividing points between modules.
The string size of the first part is N,
and the size of the second part is N-1
because the number of modules can
be changed from 1 to N during the
clustering process. For example, as
shown in Figure 2, A—H represent each
component, while 3 and 6 represent the
dividing points between the modules.
Since the first and second dividing
points are 3 and 6, respectively, the
first, second, and third modules include
elements A to C, elements D to F, and
elements G and H, respectively.

In the proposed GA, the three oper-
ation processes of selection, cross-over,
and mutation are conducted repeatedly.
First, a deterministic selection (Bdck,
1996), which is one of the selection
methods used in existing GAs, was
employed.

As for the cross-over, two kinds
of cross-over methods are applied
simultaneously to the two parts of the
extended chromosome. The sub-
tour-chunking cross-over (Gen and
Cheng, 1997; Grefenstette, 1987) op-
erates in the first part of the chromo-
some, and a modification of the one-
cut-point cross-over (Gen and Cheng,
1997) is used in the second part of the
chromosome. Specifically, the sub-
tour-chunking cross-over can generate
more mixed offspring as well as main-
tain similarly the original positions of
each chunk selected from parents. The
subtour-chunking cross-over method is
known to give better results compared
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to other kinds of direct Module 1
encoding cross-overs (Gen
and Cheng, 1997).

An example of the
proposed cross-over using

AEEREE R

Module 2 Module 3

dividing
points

the extended chromosome
follows based on Figure 3.

15t part 2 part

FIGURE 2. Extended Chromosome

© 1. Chunks (B CD)and
(GACB)are chosen
from each first part
of two parents. In the
second part, the genes are jumbled.

© 2.The chunk (B CD)is placed into
the offspring so as to maintain the
original position in the Parent 1, and
the chunk (G A) except the overlapped
components B and Cis placed to
the right of the chunk (B C D).

© 3.The chunk (A) is chosen from the first
part of Parent 1. However, the chunk
is not used because (A) already exists
in the offspring. An arbitrary point
as the cut point of the second part is
selected. The number of genes after the
cut point in Parent 1and before the cut
point in Parent 2 should be the same.

© 4.The chunk (D F) is chosen from the
first part of Parent 2, but only the chunk
(F) except the overlapped component D
is placed into the offspring. The cut point
of the second part is selected as well.

© 5.The chunk (G H) is chosen from the
first part of Parent 1, but only the chunk
(H) is placed in the seventh position.
Also, the first chunk in the second part
of Parent 1is placed into the offspring
in the same position as in Parent 1.

© 6.The chunk (E H) is chosen from the
first part of Parent 2, but only the chunk
(E) is placed in the last position. Also,
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the first chunk in the second part of
Parent 2 is spliced to the offspring.

© 7.The genes in the second part of the
offspring are sorted in ascending order.

In the case of mutation, the swap-
ping and altering method from (Jung et
al., 2013) is modified and applied to the
clustering problem here.

The computational procedure of the
GA is as follows. In Step 1, an initial
DSM is defined. In Step 2, the param-
eters such as mutation probability and
population size are initialized. In Step
3, an initial population is generated in
accordance with the given population
size. In Step 4, Equations (1)-(2) are
used to evaluate MI, and MI, for the
DSM of each individual generated ac-
cording to the population size. In Step
5, Equation (3) is employed to evaluate
the fitness function ffor the DSM of
each individual. In Step 6, the individ-
ual with the smallest fitness function
is selected, and convergence to the
optimum is checked. In Step 7, the
operations (selection, cross-over, and
mutation) of the GA are performed to
generate a new population, and the GA
returns to Step 4.

ua-aaaan ,,,,,,,, B Enon
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FIGURE 3. Crossover for the extended chromosome
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method, the total number of modules is six and each module was also reduced as shown in Figure (Borjesson and Héltti-Otto, 2012) Proposed method
contains more components than the previous result. This 5(b). Module No. Component Module No. Component
. ase tu y new clustering result is reasonable in view of structure as M1 1 Battery bay left NM1 54  Button cam receiver
shown in Figure 4, and each module consists of the compo- 2 Battery bay right 55 Button cam device
In order to validate the perfor- nents with the strong interactions each other. 4 C n in m r M2 3 C:am s:e:: Igf:] NM2 19 Vortelx g.enjrator
nex 1 h £ componen ntain 0 Cu g e a S 4 Clam shell right 20  Nozzle air duct
mance of the proposed method, an ‘ We ext evaluated the types of components contained . S Dirt bowl recelver 2 Dustflap
existing test product to define modular within each module and the sequence of the componentg as 6 Escutcheon 22 Nozzle release holder
architecture was chosen as the case well. For example, the newly defined module NM2 contains In this research, we proposed new 7 Exhaust duct 18 Nozzle
study for this paper. The product is a the components related to nozzle and filter. In the NM2, the modularity indices and investigated 8 Exhaustgrate T el i
Black & Decker model CHV 1210 Dust-  components related to nozzle are closer together than other their impact using a new clustering 9 :mpe::er housing 42, EF)ZZI)IE rellease latch receiver
- . oy 10 mpeller irt bow
buster® (Borjesson and Holttd-Otto, components and the filter-related components are closely method to drive module definition. The P 4 '
L - . laced each other. A similar phenomena in the sequence of oo W e e 18 Mozl relese gping
2012), which is seen in Figure 4. Borjes- p modularity index MI, measures the i i
y g ] . . Yy 1 12 Wall hook receiver 45 Dirt bowl release latch
e Tesne . components is also observed in other modules. As stated . ) )
son and Holttd-Otto (2014) introduced reviously, the Dustbuster example iust used 0-1 representa closeness to the diagonal of a DSM, and M3 13 Wall hook 42 Filter media
the disassembled structure of this P for i Y f b plejustt h P ¢ the value of M1, is always determined 14 Wall mount 43 Filter media holder
roduct in detail. The Dustbuster CHV tion for interfaces between components in the DSM. If we between 0 and 1 recardl  the si 15 Grooves NM3 35 Transistor
11)210 consists of 57 components (Table utilize an advanced design dependency measure to represent etween U a egardless o ) €size Ma 16 Nozzle release spring 34 Resistor
d 0-1i . P tati interfaces, then we expect to obtain more accurate modular of the DSM. MI, captures the inde- 17 Nozzle release latch 33 Rectifier Diode
1an use O-L interface representation . .o ¢ ve results using the proposed method. pendency of each module in a clustered 18 Nozzle 36 Printed Circuit Board
whgre 1 1nd1cat‘es a co(rllnoe‘ctcllf)n (e, DSM. Thus, M1, closer to 0.0 indicates 19 Vortex generator 32 Light Emitting Diode
an mte;face exists) :‘m 0 indicates no (Borjesson and a higher degree of module independ- 20  Nozzle air duct 31 Low voltage AC connector female
connection (Browning, 2001). Holtta-Otto, 2012) Proposed method .. 21 Dust flap 28  Power button
In this paper, the clustered DSM ' ency. The two modularlty indices were 22 Nozzle release holder 27 Styling handle
n o1 - .
pepen . Rate of active cells within utilized as the objective function for M 23 Dirt bowl release sprin 25 Antitheft device
and the resulting modules obtained modules ) > 3 - >
u . P g q
usine the proposed method are com- (# of active cells within 69.2% (119/172) 87.8% (151/172) 0pt1m121ng a DSM. As a search strate- 24 Dirt bowl release button 24 Dirt bowl release button
8 prop modules / devel d a GA usi d- 25 Anti-theft device 23 Dirt bowl release spring
: A gy, we developed a using an exten
pared to the clustered DSM result in # of total active cells) ' . 56 structural handle 56 structural handle
reference. Figure 5(cz) shows the clus- v 0.877 0913 efl chrorr‘losome, Wthh contains two 27 Styling handle 56 Microswitch bracket
tered DSM for the Dustbuster CHV kinds of information: (1) the sequence 28 Power button 57 Microswitch
1210 from (Borjesson and Hélttd-Otto, Ml 0.099 0.066 of each component and (2) the dividing M6 29  Low voltage AC connector male 29 Low voltage AC connector male
2012), and Figure 5(b) shows the new TABLE 2. C )  the rate of active cells within modules and points between modules. The meth- 30 Leads o e
clustering result. As shown in Figure modular.ityoirr?ggcre,sson of the rate of active cefls within modules an od for operating cross-over between ” L tov:] Vglt?gé ACDC.OTECW femals o = Eattery paﬁktegmmalzl
. . 7 32 ight Emitting Diode 4 50 attery cell rechargeable
5(a) from the previous clustering result, the extended chromosomes was also 5 Regmﬁer - dge 18 Shrinkywrap 5
the system was decomposed into too Table 2 shows a comparison of modularity index M/, and described. 34 Resistor 47 Battery cell blank
many small clusters which cannot MI2 values and the number of active interface cells within An existing test product in the o Tensismy NM5 30 Leads
constitute a module, even though the modules. Similar to M1, and ML, the rates of active inter- literature was chosen to validate the B 36 :/rlnltedtCIrc'UIt|Board 15 ?rom;es
1 . . . . 1
Dustbuster is a small electro-mechan- action cells within modules were also compared in order performance of the proposed method. i; Vigrgtri;r?;:pser ;3 E;aczsp;;g;;n
ical product. The module planning, to check the modularity of the DSMs. Consequently, we Comparing the new clustering result 39 Electric motor 52 power plugs
development, manufacturing, etc. observed that M1, and M1, values and the rate of active cells to the previous result in the literature, 40 Motor shaft 14 Wall mount
!)ased on the defined modules contain-  within modules of the new DSM are better than those of the we observed that the MI, and M, M9 41 Motor cover 13 Wallhook
lngt onl}r two or tgfei ;OHEOH;dedO previously clustered DSM as shown in Table 2. Thus, more values of the DSMs clustered by using 1; EI:Eer mej!a - NM6 z Elrttt bovLI recfenr/]ir
not make sense. On the other hand, ithi i ilter media holder attery bay ri
S ety gt SR i o el o o e ol e papoimetodehate v g S L o o
those of the previous DSMs. Thus, the 45  Dirt bowl release latch 12 Wall hook receiver
new clustering results indicate a higher 46 Dirt bowl 4 Clamshell right
NM3 oo (pe L R degree of the modularity on the strong M 47 Bﬁttel?’ czl Bl & E’I‘ha“? g”r‘?t:
~ d I " . . 8  Shrink wra Clam shell left
Esculahocn Py, i Z S interactions between components 19 Ba:terywp:afk S Z_ Escutcheon
'L >l within each module (i.e., closeness 50  Battery cell rechargeable 7 Exhaust duct
i Stucwrsl %2 LS to the diagonal of DSM) and module M12 51 Transformer 9 Impeller housing
4 Gu— r irt bowl
c.g,;n o g release latch ;/::;:w p NM2 independency. The results also showed 52 Power plugs 10 Impeller
“¥ y Motor q
G, senven ]("5"-“5' - - that module definition with the pro- 53 Encapsulation : 1 Motor bracket
NM6 E e — m d hod 1y vield M13 54  Button cam receiver 41 Motor cover
o [t - posed method structurally yields more 55 Button cam device 39 Electric motor
s Bancy GEREER , reasonable modular architectures. The Mi4 56 Microswitch bracket 38 Vibration damper
grie borih [t Lo e [ ada fap. E?g;s: Heste suggested clustering method is expect- 57 Microswitch 40 Motor shaft
4 Nozzle

FIGURE 4. The disassembled structure of
Dustbuster (Borjesson and Hélttd-Otto, 2014)
and the module boundaries obtained using
the proposed method
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ed to be effective for defining prelim-
inary modules in component-based
system architectures.
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TABLE 1. The resulting modules and components of the Dustbuster
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FIGURE 5. The
clustered DSMs
and the resulting
modules of the
Dustbuster
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B. The clustered DSM
obtained using the
proposed method
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