
KEYWORDS f Clustering f Design Structure Matrix f Module Definition f Modularity
f Genetic Algorithm

r A B S T R A C T

Module definition entails clustering a product architecture into independent or coordinated modules. Clustering

algorithms based on Design Structure Matrices (DSMs) for defining modules have been widely studied. After re-

viewing existing clustering algorithms, we introduce simple new metrics that can be used as modularity indices

bounded between 0 and 1 and also utilized as the objective functions to obtain optimal DSMs by maximizing

interactions within modules and interactions between modules. As a search strategy for clustering modules,

a combinatorial genetic algorithm using a new extended chromosome approach and modified operators for

the chromosome is suggested. The module definition results indicated that the proposed clustering method

using new modularity indices and genetic algorithm helps obtain optimal modular product architectures more

logically.

CLUSTERING Techniques Development

BLOCK 1

 SEPTEMBER – DECEMBER 2015 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 39SPECIAL ISSUE DSM CONFERENCE 2014

A Clustering Method Using New
MODULARITY
INDICES AND A
GENETIC ALGORITHM
WITH EXTENDED
CHROMOSOMES

(SMI) to capture the degree of
the closeness to the diagonal
of DSM and (2) the non-zero
fraction (NZF) to capture the
sparsity of the interrelationships
between components. These
modularity indices are theoret-
ically bounded between 0 and
1 regardless of the size of DSM,
but they cannot be directly used
as the objective functions for
clustering DSM. This is because
the SMI value of a DSM is con-
stant even though the sequence
of components within the DSM
is changed.

Yu et al. (2003, 2007) suggest
a modularity measure using
the minimum description
length (MDL) principle (Ris-
sanen, 1978, 1999) to mini-
mize the information needed
to describe the connectivity
between modules. Helmer et
al. (2010) improved Yu et al.’s
clustering algorithm in order
to overcome the deficiencies
such as excessively overlapped

components between clusters.
The modularity measure based
on the MDL principle is known
to be a useful objective function
for clustering DSMs to drive
module definition, but the value
of this measure increases with
the DSM size, making it difficult
to compare modularity between
modular architectures of differ-
ent sizes.

Meanwhile, in recent years,
genetic algorithms (GAs) have
been used for the purpose of
clustering DSMs (Helmer et
al., 2010; Kamrani and Gon-
zalez, 2003; Whitfield et al.,
2002; Yu et al., 2007). This is
mainly because GAs can handle
discrete design variables and are
far more likely to find a global
optimum because they widely
explore the entire design space.
However, existing GAs for
clustering are known to reach
to the optimum solution slowly
because the GAs are based on
binary coding and the chromo-

some lengths of the GAs might
be extremely extended accord-
ing to the number of compo-
nents or the number of modules
(Borjesson and Hölttä-Otto,
2012; Yu et al., 2007).

After reviewing the exist-
ing modularity measures and
clustering algorithms in the
literature, we propose new mod-
ularity indices that overcome
the deficiencies of the previous
modularity measures, and a new
search strategy for clustering is
suggested. In this paper, Section
2 describes the modularity
indices and the proposed GA
using a new extended chromo-
some approach and modified
operators for the chromosome.
Section 3 presents the module
definition result of a real-world
product to demonstrate the
effectiveness of the proposed
method. Finally, Section 4 pre-
sents some conclusions.

r Sangjin Jung
The Pennsylvania State University,
University Park, PA, USA

sxj26@psu.edu

r Timothy W. Simpson
The Pennsylvania State University,
University Park, PA, USA

tws8@psu.edu

1.	 Introduction
Many companies are trying

to not only provide customers
with differentiated products
on time but also reduce costs.
Product planning and develop-
ment strategies focused on sin-
gle products can be ineffective
from a product family point of
view. Product planning, devel-
opment, and production based
on modular product platforms
are known to provide a compet-
itive strategy for reducing total
cost as well as shortening time
to market.

Defining modules and the
modular product architecture is
a key step in a modular platform
definition process (Otto et al.,
2013). After the 1990s, various
methods to define modules
for product families have been
widely studied (Gershenson
et al., 2004; Otto et al., 2013;
Simpson, 2004). Particular-
ly, many module definition

methods were focused on ma-
trix-based approaches because
using a matrix such as the
Design Structure Matrix (DSM)
(Browning, 2001; Eppinger and
Browning, 2012; Steward, 1981)
is an effective way to represent
and visualize the relationships
between elements within a
product architecture. In recent
years, clustering algorithms
using DSMs and numerical
heuristic methods have been
actively studied to cluster the el-
ements within a product archi-
tecture into modules (Borjesson
and Hölttä-Otto, 2012; Helmer
et al., 2010; Thebeau, 2001; Yu et
al., 2003; Yu et al., 2007).

Most clustering algorithms
utilize a measure to assess the
degree of modularity, and the
modularity measure is usually
used as the objective function
of the clustering algorithm.
Guo and Gershenson (2003)
and Gershenson et al. (2004)
reviewed various modularity
measures. Guo and Gershenson
(2004) also introduced a mod-

ularity metric that maximize
connections within a module
and minimize the connectivity
between modules simultane-
ously, but it is not suitable to
use this metric directly as an
objective function for clustering
DSMs.

Fernandez (1998) and
Thebeau (2001) developed a
clustering method using the
modularity metric called total
coordination cost to mini-
mize the interactions between
clusters and to maximize the
interactions within clusters.
Borjesson and Hölttä-Otto
(2012) improved Thebeau’s
clustering algorithm to obtain
useful clustering results more
quickly. However, the clustering
algorithm of Thebeau is known
to sometimes produce too many
small clusters, which cannot
constitute a module (van Beek et
al., 2010).

Hölttä-Otto and de Weck
(2007) introduced two types
of modularity indices: (1) the
singular value modularity index

 SEPTEMBER – DECEMBER 2015 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 4140 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | SEPTEMBER – DECEMBER 2015

BLOCK #1 /// A CLUSTERING METHOD USING NEW MODULARITY INDICES AND A GENETIC ALGORITHM WITH EXTENDED CHROMOSOMES

SPECIAL ISSUE DSM CONFERENCE 2014

2.	Clustering Algorithm
2.1 Modularity Indices

We introduce simple new metrics that can be
used as objective functions for optimizing DSMs
and also utilized as modularity indices obtained
between 0 and 1. The modularity index MI1 meas-
ures the proximity of component interactions to
the diagonal of a DSM:

(1)

where DSMij is the value of the ith row and jth
column element in DSM; DSMmax is the maximum
interaction value within DSM; and N represents
the total number of components. The value of MI1
is always between 0 and 1 regardless of the size
of the DSM. As shown in Figure 1(a), a MI1 value
close to 1 denotes that the interactions are near
the diagonal of the DSM. Thus, MI1 should be
maximized to be close to 1 when MI1 is utilized as
an objective function for clustering DSMs. By do-
ing so, the DSM clustered maximizing MI1 shows
which components should be arranged around a
component within a module. Also, one can know
which components are placed near the module
boundary. For example, if there exists the interac-
tion between two components contained within
two different modules respectively, then the two
components are arranged near the boundaries of
each module so that they can be placed near each
other. The sequence information of components
within each module can also be utilized to archi-
tect product families that contain shared compo-
nents and modules based on this clustering.

MI2 represents a modularity index for the
independency of each module. MI2 is formulated
as follows:

(2)

where in
iCS is the sum of interaction values with-

in ith modules; out
ijCS is the sum of interactions

between ith and jth modules; m is the number of
modules; and ε is a very small positive number. As
shown in Figure 1(b), MI2 is usually bounded be-
tween 0 and 1. MI2 closer to 0.0 indicates a higher
degree of the module independency. In Figure
1(b), a large dot within a DSM represents a greater
interaction value than a small dot. In some cases,
MI2 might be greater than 1 if the sum of the
interaction values between modules is greater
than the sum of the interactions between compo-
nents within a module. In Equation (2), ε(N-m) is
utilized to obtain the clustering result including
more divided modules among the clustering re-
sults with the same MI2 values when the proposed
modularity indices are used as the objective
functions for optimizing DSMs. ε is usually set as
a sufficiently small positive number such as 10-8.

The proposed modularity indices can be uti-
lized as the objective functions when optimizing
DSMs. Since we should maximize MI1 and min-
imize MI2 simultaneously to reach an optimized
clustering result, a scalarization function was
employed to formulate the optimization problem
as follows:

2

1

MIf
MI

=

 (3)

By using Equation (3) as the fitness function of
the proposed GA, we can obtain optimal DSMs
including the maximized interactions within
modules and the minimized interactions between
modules.

2.2 Genetic Algorithm

This section introduces a search strategy using
a genetic algorithm (GA) for clustering DSMs.

To reduce the computation time of
the GA, we developed a GA using an
extended chromosome approach and
modified operators for the chromo-
some.

In this study, the extended direct
encoding chromosome, which can hold
two kinds of information in a single
chromosome, is defined based on a
method suggested by Jung et al. (2013).
We modified their chromosome defini-
tion method in order for each chro-
mosome to have the same string size.
The extended chromosome consists of
two parts. The first part of the chromo-
some includes the information on the
sequence of each component, and the
second part holds the information on
the dividing points between modules.
The string size of the first part is N,
and the size of the second part is N-1
because the number of modules can
be changed from 1 to N during the
clustering process. For example, as
shown in Figure 2, A–H represent each
component, while 3 and 6 represent the
dividing points between the modules.
Since the first and second dividing
points are 3 and 6, respectively, the
first, second, and third modules include
elements A to C, elements D to F, and
elements G and H, respectively.

In the proposed GA, the three oper-
ation processes of selection, cross-over,
and mutation are conducted repeatedly.
First, a deterministic selection (Bäck,
1996), which is one of the selection
methods used in existing GAs, was
employed.

As for the cross-over, two kinds
of cross-over methods are applied
simultaneously to the two parts of the
extended chromosome. The sub-
tour-chunking cross-over (Gen and
Cheng, 1997; Grefenstette, 1987) op-
erates in the first part of the chromo-
some, and a modification of the one-
cut-point cross-over (Gen and Cheng,
1997) is used in the second part of the
chromosome. Specifically, the sub-
tour-chunking cross-over can generate
more mixed offspring as well as main-
tain similarly the original positions of
each chunk selected from parents. The
subtour-chunking cross-over method is
known to give better results compared

FIGURE 1. MI
1
 and MI

2
 values for interaction patterns of DSMs

(A) MI
1

(B) MI
2

parent 1 10 0 0D E F GA B C H 74 5

parent 2 0 0 0A C BD F G E 0H 2 3 6

Choose chunks Jumble

parent 1 74 0 5D E F GA B C H 10 0

parent 2 0 2 0A C BD F G E 0H 6 3 0

of f spring D G AC

Choose chunks Cut

B

parent 1 74 0 5D E F GA B C H 10 0

parent 2 0 2 0A C BD F G E 0H 6 3 0

of f spring D G ACBF

Choose chunks S plice

parent 1 74 0 5D E F GA B C H 10 0

parent 2 0 2 0A C BD F G E 0H 6 3 0

of f spring D G ACBF H E 04 0 5 02 0

of f spring D G ACBF H E 00 0 0 52 4(continued)

A B C D E F G H 0 0

Module 3Module 2Module 1

dividing
points

1st part 2nd part

0 0 0 3 6

FIGURE 2. Extended Chromosome

FIGURE 3. Crossover for the extended chromosome

to other kinds of direct
encoding cross-overs (Gen
and Cheng, 1997).

An example of the
proposed cross-over using
the extended chromosome
follows based on Figure 3.

ff 1. Chunks (B C D) and
(G A C B) are chosen
from each first part
of two parents. In the
second part, the genes are jumbled.

ff 2. The chunk (B C D) is placed into
the offspring so as to maintain the
original position in the Parent 1, and
the chunk (G A) except the overlapped
components B and C is placed to
the right of the chunk (B C D).

ff 3. The chunk (A) is chosen from the first
part of Parent 1. However, the chunk
is not used because (A) already exists
in the offspring. An arbitrary point
as the cut point of the second part is
selected. The number of genes after the
cut point in Parent 1 and before the cut
point in Parent 2 should be the same.

ff 4. The chunk (D F) is chosen from the
first part of Parent 2, but only the chunk
(F) except the overlapped component D
is placed into the offspring. The cut point
of the second part is selected as well.

ff 5. The chunk (G H) is chosen from the
first part of Parent 1, but only the chunk
(H) is placed in the seventh position.
Also, the first chunk in the second part
of Parent 1 is placed into the offspring
in the same position as in Parent 1.

ff 6. The chunk (E H) is chosen from the
first part of Parent 2, but only the chunk
(E) is placed in the last position. Also,

the first chunk in the second part of
Parent 2 is spliced to the offspring.

ff 7. The genes in the second part of the
offspring are sorted in ascending order.

In the case of mutation, the swap-
ping and altering method from (Jung et
al., 2013) is modified and applied to the
clustering problem here.

The computational procedure of the
GA is as follows. In Step 1, an initial
DSM is defined. In Step 2, the param-
eters such as mutation probability and
population size are initialized. In Step
3, an initial population is generated in
accordance with the given population
size. In Step 4, Equations (1)-(2) are
used to evaluate MI1 and MI2 for the
DSM of each individual generated ac-
cording to the population size. In Step
5, Equation (3) is employed to evaluate
the fitness function f for the DSM of
each individual. In Step 6, the individ-
ual with the smallest fitness function
is selected, and convergence to the
optimum is checked. In Step 7, the
operations (selection, cross-over, and
mutation) of the GA are performed to
generate a new population, and the GA
returns to Step 4.

 SEPTEMBER – DECEMBER 2015 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 4342 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | SEPTEMBER – DECEMBER 2015

BLOCK #1 /// A CLUSTERING METHOD USING NEW MODULARITY INDICES AND A GENETIC ALGORITHM WITH EXTENDED CHROMOSOMES

SPECIAL ISSUE DSM CONFERENCE 2014

3.	Case Study
In order to validate the perfor-

mance of the proposed method, an
existing test product to define modular
architecture was chosen as the case
study for this paper. The product is a
Black & Decker model CHV 1210 Dust-
buster® (Borjesson and Hölttä-Otto,
2012), which is seen in Figure 4. Borjes-
son and Hölttä-Otto (2014) introduced
the disassembled structure of this
product in detail. The Dustbuster CHV
1210 consists of 57 components (Table
1) and use 0-1 interface representation
where 1 indicates a connection (i.e.,
an interface exists) and 0 indicates no
connection (Browning, 2001).

In this paper, the clustered DSM
and the resulting modules obtained
using the proposed method are com-
pared to the clustered DSM result in
reference. Figure 5(a) shows the clus-
tered DSM for the Dustbuster CHV
1210 from (Borjesson and Hölttä-Otto,
2012), and Figure 5(b) shows the new
clustering result. As shown in Figure
5(a) from the previous clustering result,
the system was decomposed into too
many small clusters which cannot
constitute a module, even though the
Dustbuster is a small electro-mechan-
ical product. The module planning,
development, manufacturing, etc.
based on the defined modules contain-
ing only two or three components do
not make sense. On the other hand,
in the DSM clustered by the proposed

FIGURE 4. The disassembled structure of
Dustbuster (Borjesson and Hölttä-Otto, 2014)
and the module boundaries obtained using
the proposed method

TABLE 1. The resulting modules and components of the Dustbuster

(Borjesson and Hölttä-Otto, 2012) Proposed method

Module No. Component Module No. Component

M1 1 Battery bay left NM1 54 Button cam receiver
2 Battery bay right 55 Button cam device

M2 3 Clam shell left NM2 19 Vortex generator
4 Clam shell right 20 Nozzle air duct
5 Dirt bowl receiver 21 Dust flap
6 Escutcheon 22 Nozzle release holder
7 Exhaust duct 18 Nozzle
8 Exhaust grate 17 Nozzle release latch
9 Impeller housing 44 Nozzle release latch receiver
10 Impeller 46 Dirt bowl
11 Motor bracket 16 Nozzle release spring
12 Wall hook receiver 45 Dirt bowl release latch

M3 13 Wall hook 42 Filter media
14 Wall mount 43 Filter media holder

15 Grooves NM3 35 Transistor

M4 16 Nozzle release spring 34 Resistor
17 Nozzle release latch 33 Rectifier Diode
18 Nozzle 36 Printed Circuit Board
19 Vortex generator 32 Light Emitting Diode
20 Nozzle air duct 31 Low voltage AC connector female
21 Dust flap 28 Power button
22 Nozzle release holder 27 Styling handle

M5 23 Dirt bowl release spring 25 Anti-theft device
24 Dirt bowl release button 24 Dirt bowl release button
25 Anti-theft device 23 Dirt bowl release spring

26 Structural handle 26 Structural handle
27 Styling handle 56 Microswitch bracket
28 Power button 57 Microswitch

M6 29 Low voltage AC connector male 29 Low voltage AC connector male
30 Leads 37 Motor terminals
31 Low voltage AC connector female 49 Battery pack terminals

M7 32 Light Emitting Diode NM4 50 Battery cell rechargeable
33 Rectifier Diode 48 Shrink wrap
34 Resistor 47 Battery cell blank

35 Transistor NM5 30 Leads
36 Printed Circuit Board 15 Grooves

M8 37 Motor terminals 51 Transformer
38 Vibration damper 53 Encapsulation
39 Electric motor 52 Power plugs
40 Motor shaft 14 Wall mount

M9 41 Motor cover 13 Wall hook

42 Filter media NM6 5 Dirt bowl receiver
43 Filter media holder 2 Battery bay right

M10 44 Nozzle release latch receiver 1 Battery bay left
45 Dirt bowl release latch 12 Wall hook receiver
46 Dirt bowl 4 Clam shell right

M11 47 Battery cell blank 8 Exhaust grate
48 Shrink wrap 3 Clam shell left
49 Battery pack terminals 6 Escutcheon
50 Battery cell rechargeable 7 Exhaust duct

M12 51 Transformer 9 Impeller housing
52 Power plugs 10 Impeller
53 Encapsulation 11 Motor bracket

M13 54 Button cam receiver 41 Motor cover
55 Button cam device 39 Electric motor

M14 56 Microswitch bracket 38 Vibration damper
57 Microswitch 40 Motor shaft

method, the total number of modules is six and each module
contains more components than the previous result. This
new clustering result is reasonable in view of structure as
shown in Figure 4, and each module consists of the compo-
nents with the strong interactions each other.

We next evaluated the types of components contained
within each module and the sequence of the components as
well. For example, the newly defined module NM2 contains
the components related to nozzle and filter. In the NM2, the
components related to nozzle are closer together than other
components and the filter-related components are closely
placed each other. A similar phenomena in the sequence of
components is also observed in other modules. As stated
previously, the Dustbuster example just used 0-1 representa-
tion for interfaces between components in the DSM. If we
utilize an advanced design dependency measure to represent
interfaces, then we expect to obtain more accurate modular
architecture results using the proposed method.

(Borjesson and
Hölttä-Otto, 2012) Proposed method

Rate of active cells within
modules

(# of active cells within
modules /

of total active cells)

69.2% (119/172) 87.8% (151/172)

MI
1

0.877 0.913

MI
2

0.099 0.066

TABLE 2. Comparison of the rate of active cells within modules and
modularity indices

Table 2 shows a comparison of modularity index MI1 and
MI2 values and the number of active interface cells within
modules. Similar to MI1 and MI2, the rates of active inter-
action cells within modules were also compared in order
to check the modularity of the DSMs. Consequently, we
observed that MI1 and MI2 values and the rate of active cells
within modules of the new DSM are better than those of the
previously clustered DSM as shown in Table 2. Thus, more
components within each module were closer to the diagonal
of DSM and the number of interactions between modules

was also reduced as shown in Figure
5(b).

4.	Concluding Remarks
In this research, we proposed new

modularity indices and investigated
their impact using a new clustering
method to drive module definition. The
modularity index MI1 measures the
closeness to the diagonal of a DSM, and
the value of MI1 is always determined
between 0 and 1 regardless of the size
of the DSM. MI2 captures the inde-
pendency of each module in a clustered
DSM. Thus, MI2 closer to 0.0 indicates
a higher degree of module independ-
ency. The two modularity indices were
utilized as the objective function for
optimizing a DSM. As a search strate-
gy, we developed a GA using an extend-
ed chromosome, which contains two
kinds of information: (1) the sequence
of each component and (2) the dividing
points between modules. The meth-
od for operating cross-over between
the extended chromosomes was also
described.

An existing test product in the
literature was chosen to validate the
performance of the proposed method.
Comparing the new clustering result
to the previous result in the literature,
we observed that the MI1 and MI2
values of the DSMs clustered by using
the proposed method are better than
those of the previous DSMs. Thus, the
new clustering results indicate a higher
degree of the modularity on the strong
interactions between components
within each module (i.e., closeness
to the diagonal of DSM) and module
independency. The results also showed
that module definition with the pro-
posed method structurally yields more
reasonable modular architectures. The
suggested clustering method is expect-
ed to be effective for defining prelim-
inary modules in component-based
system architectures.

 SEPTEMBER – DECEMBER 2015 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 4544 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | SEPTEMBER – DECEMBER 2015

BLOCK #1 /// A CLUSTERING METHOD USING NEW MODULARITY INDICES AND A GENETIC ALGORITHM WITH EXTENDED CHROMOSOMES

SPECIAL ISSUE DSM CONFERENCE 2014

Bäck, T. (1996). Evolutionary algorithms in theory and
practice: evolution strategies, evolutionary pro-
gramming, genetic algorithms. Oxford university
press.

Borjesson, F., Hölttä-Otto, K. (2012). Improved clus-
tering algorithm for design structure matrix, ASME
2012 International Design Engineering Technical
Conferences and Computers and Information in
Engineering Conference. American Society of Me-
chanical Engineers, pp. 921-930.

Borjesson, F., Hölttä-Otto, K. (2014). A Module Gen-
eration Algorithm for Product Architecture based
on Component Interactions and Strategic Drivers.
Research in Engineering Design 25, 31-51.

Browning, T.R. (2001). Applying the Design Structure
Matrix to System Decomposition and Integration
Problems: A Review and New Directions. IEEE
Transactions on Engineering Management 48, 292-
306.

Eppinger, S.D., Browning, T.R. (2012). Design Struc-
ture Matrix Methods and Applications. MIT Press,
Cambridge, MA.

Fernandez, C.I.G. (1998). Integration analysis of prod-
uct architecture to support effective team co-loca-
tion. ME thesis, MIT, Cambridge, MA.

Gen, M., Cheng, R. (1997). Genetic algorithms and
engineering design. Wiley.

Gershenson, J.K., Prasad, G.J., Zhang, Y. (2004).
Product modularity: measures and design methods.
Journal of Engineering Design 15, 33-51.

Grefenstette, J. (1987). Incorporating problem specific
knowledge into genetic algorithms, in: Davis, L.
(Ed.), Genetic algorithms and simulated annealing.
Morgan Kaufmann Publishers, Los Altos, CA.

Guo, F., Gershenson, J.K. (2003). Comparison of Mod-
ular Measurement Methods Based on Consistency
Analysis and Sensitivity Analysis, in: Schmidt, L.
(Ed.), ASME Design Engineering Technical Con-
ferences - Design Theory & Methodology. ASME,
Chicago, IL.

Guo, F., Gershenson, J.K. (2004). A comparison of
modular product design methods based on im-
provement and iteration, ASME 2004 International
Design Engineering Technical Conferences and
Computers and Information in Engineering Confer-
ence. American Society of Mechanical Engineers,
pp. 261-269.

Helmer, R., Yassine, A., Meier, C. (2010). Systematic
module and interface definition using component
design structure matrix. Journal of Engineering
Design 21, 647-675.

Hölttä-Otto, K., de Weck, O. (2007). Degree of Mod-
ularity in Engineering Systems and Products with
Technical and Business Constraints. Concurrent
Engineering: Research and Applications 15, 113-126.

Jung, S., Park, G.-B., Choi, D.-H. (2013). A Decompo-
sition Method for Exploiting Parallel Computing
including Determination of an Optimal Number of
Subsystems. ASME Journal of Mechanical Design
135, 041005 (041009 pgs).

Kamrani, A.K., Gonzalez, R. (2003). A genetic algo-
rithm-based solution methodology for modular
design. Journal of Intelligent Manufacturing 14,
599-616.

Otto, K., Hölttä-Otto, K., Simpson, T.W. (2013).
Linking 10 years of modular design research: alter-
native methods and tool chain sequences to support
product platform design, ASME Design Engineering
Technical Conferences, Portland, OR.

Rissanen, J. (1978). Modeling by shortest data descrip-
tion. Automatica 14, 465-471.

Rissanen, J. (1999). Hypothesis selection and testing
by the MDL principle. The Computer Journal 42,
260-269.

Simpson, T.W. (2004). Product platform design and
customization: status and promise. Artificial
Intelligence for Engineering Design, Analysis and
Manufacturing 18, 3-20.

Steward, D.V. (1981). Systems Analysis and Manage-
ment: Structure, Strategy and Design. Petrocelli
Books, Inc., New York.

Thebeau, R.E. (2001). Knowledge management of
system interfaces and interactions for product
development process, System design & management
program. Massachusetts Institute of Technology,
Cambridge, MA.

van Beek, T.J., Erden, M.S., Tomiyama, T. (2010).
Modular design of mechatronic systems with func-
tion modeling. Mechatronics 20, 850-863.

Whitfield, R.I., Smith, J.S., Duffy, A.B. (2002). Identi-
fying component modules, Artificial Intelligence in
Design’02. Springer, pp. 571-592.

Yu, T.-L., Yassine, A.A., Goldberg, D.E. (2003). A
genetic algorithm for developing modular product
architectures, ASME 2003 International Design
Engineering Technical Conferences and Computers
and Information in Engineering Conference. Ameri-
can Society of Mechanical Engineers, pp. 515-524.

Yu, T.-L., Yassine, A.A., Goldberg, D.E. (2007). An
Information Theoretic Method for Developing
Modular Architectures Using Genetic Algorithms.
Research in Engineering Design 18, 91-109.

re
fe

re
nc

es

authors

r Sangjin Jung is a postdoctoral research associate
at the Pennsylvania State University. He received his
PhD and MS in Mechanical Engineering from Hanyang
University in 2012 and 2007. He was a senior research
engineer at LG Production Engineering Research In-
stitute (PRI) in Modular Design Group. He is currently
developing modularity assessment and product ar-

chitecting methods. He is also interested in product family redesign,
multidisciplinary design optimization, and value-driven design.

r Timothy W. Simpson� is a Professor of Mechan-
ical and Industrial Engineering at Penn State with
affiliate appointments in Engineering Design and
the College of Information Sciences and Technology.
His research interests include product family and
product platform design, trade space exploration,
multidisciplinary design optimization, and additive

manufacturing. He has co-authored over 250 peer-reviewed journal
and conference papers and served as the lead editor on two books
on product family and product platform design. He is the recipient
of the 2013 ASME Ben C. Sparks Award, the 2011 ASEE Fred Merryfield
Design Award, and numerous awards for outstanding teaching and
research at Penn State. He is a Fellow in ASME and an Associate
Fellow in AIAA. He received his Ph.D. and M.S. degrees in Mechanical
Engineering from Georgia Tech, and his B.S. in Mechanical Engineering
from Cornell University.

FIGURE 5. The
clustered DSMs
and the resulting
modules of the
Dustbuster

B. The clustered DSM
obtained using the
proposed method

A. The clustered DSM
in Ref. (Borjesson and
Hölttä-Otto, 2012)

