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r   A B S T R A C T 

Module definition entails clustering a product architecture into independent or coordinated modules. Clustering 

algorithms based on Design Structure Matrices (DSMs) for defining modules have been widely studied. After re-

viewing existing clustering algorithms, we introduce simple new metrics that can be used as modularity indices 

bounded between 0 and 1 and also utilized as the objective functions to obtain optimal DSMs by maximizing 

interactions within modules and interactions between modules. As a search strategy for clustering modules, 

a combinatorial genetic algorithm using a new extended chromosome approach and modified operators for 

the chromosome is suggested. The module definition results indicated that the proposed clustering method 

using new modularity indices and genetic algorithm helps obtain optimal modular product architectures more 

logically.

CLUSTERING Techniques Development

BLOCK 1
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(SMI) to capture the degree of 
the closeness to the diagonal 
of DSM and (2) the non-zero 
fraction (NZF) to capture the 
sparsity of the interrelationships 
between components. These 
modularity indices are theoret-
ically bounded between 0 and 
1 regardless of the size of DSM, 
but they cannot be directly used 
as the objective functions for 
clustering DSM. This is because 
the SMI value of a DSM is con-
stant even though the sequence 
of components within the DSM 
is changed.

Yu et al. (2003, 2007) suggest 
a modularity measure using 
the minimum description 
length (MDL) principle (Ris-
sanen, 1978, 1999) to mini-
mize the information needed 
to describe the connectivity 
between modules. Helmer et 
al. (2010) improved Yu et al.’s 
clustering algorithm in order 
to overcome the deficiencies 
such as excessively overlapped 

components between clusters. 
The modularity measure based 
on the MDL principle is known 
to be a useful objective function 
for clustering DSMs to drive 
module definition, but the value 
of this measure increases with 
the DSM size, making it difficult 
to compare modularity between 
modular architectures of differ-
ent sizes.

Meanwhile, in recent years, 
genetic algorithms (GAs) have 
been used for the purpose of 
clustering DSMs (Helmer et 
al., 2010; Kamrani and Gon-
zalez, 2003; Whitfield et al., 
2002; Yu et al., 2007). This is 
mainly because GAs can handle 
discrete design variables and are 
far more likely to find a global 
optimum because they widely 
explore the entire design space. 
However, existing GAs for 
clustering are known to reach 
to the optimum solution slowly 
because the GAs are based on 
binary coding and the chromo-

some lengths of the GAs might 
be extremely extended accord-
ing to the number of compo-
nents or the number of modules 
(Borjesson and Hölttä-Otto, 
2012; Yu et al., 2007).

After reviewing the exist-
ing modularity measures and 
clustering algorithms in the 
literature, we propose new mod-
ularity indices that overcome 
the deficiencies of the previous 
modularity measures, and a new 
search strategy for clustering is 
suggested. In this paper, Section 
2 describes the modularity 
indices and the proposed GA 
using a new extended chromo-
some approach and modified 
operators for the chromosome. 
Section 3 presents the module 
definition result of a real-world 
product to demonstrate the 
effectiveness of the proposed 
method.  Finally, Section 4 pre-
sents some conclusions.
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1.	 Introduction 
Many companies are trying 

to not only provide customers 
with differentiated products 
on time but also reduce costs. 
Product planning and develop-
ment strategies focused on sin-
gle products can be ineffective 
from a product family point of 
view. Product planning, devel-
opment, and production based 
on modular product platforms 
are known to provide a compet-
itive strategy for reducing total 
cost as well as shortening time 
to market.

Defining modules and the 
modular product architecture is 
a key step in a modular platform 
definition process (Otto et al., 
2013). After the 1990s, various 
methods to define modules 
for product families have been 
widely studied (Gershenson 
et al., 2004; Otto et al., 2013; 
Simpson, 2004). Particular-
ly, many module definition 

methods were focused on ma-
trix-based approaches because 
using a matrix such as the 
Design Structure Matrix (DSM) 
(Browning, 2001; Eppinger and 
Browning, 2012; Steward, 1981) 
is an effective way to represent 
and visualize the relationships 
between elements within a 
product architecture. In recent 
years, clustering algorithms 
using DSMs and numerical 
heuristic methods have been 
actively studied to cluster the el-
ements within a product archi-
tecture into modules (Borjesson 
and Hölttä-Otto, 2012; Helmer 
et al., 2010; Thebeau, 2001; Yu et 
al., 2003; Yu et al., 2007).

Most clustering algorithms 
utilize a measure to assess the 
degree of modularity, and the 
modularity measure is usually 
used as the objective function 
of the clustering algorithm. 
Guo and Gershenson (2003) 
and Gershenson et al. (2004) 
reviewed various modularity 
measures. Guo and Gershenson 
(2004) also introduced a mod-

ularity metric that maximize 
connections within a module 
and minimize the connectivity 
between modules simultane-
ously, but it is not suitable to 
use this metric directly as an 
objective function for clustering 
DSMs.

Fernandez (1998) and 
Thebeau (2001) developed a 
clustering method using the 
modularity metric called total 
coordination cost to mini-
mize the interactions between 
clusters and to maximize the 
interactions within clusters. 
Borjesson and Hölttä-Otto 
(2012) improved Thebeau’s 
clustering algorithm to obtain 
useful clustering results more 
quickly. However, the clustering 
algorithm of Thebeau is known 
to sometimes produce too many 
small clusters, which cannot 
constitute a module (van Beek et 
al., 2010).

Hölttä-Otto and de Weck 
(2007) introduced two types 
of modularity indices: (1) the 
singular value modularity index 
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2.	Clustering Algorithm
2.1 Modularity Indices

We introduce simple new metrics that can be 
used as objective functions for optimizing DSMs 
and also utilized as modularity indices obtained 
between 0 and 1. The modularity index MI1 meas-
ures the proximity of component interactions to 
the diagonal of a DSM:

(1)

where DSMij is the value of the ith row and jth 
column element in DSM; DSMmax is the maximum 
interaction value within DSM; and N represents 
the total number of components. The value of MI1 
is always between 0 and 1 regardless of the size 
of the DSM. As shown in Figure 1(a), a MI1 value 
close to 1 denotes that the interactions are near 
the diagonal of the DSM. Thus, MI1 should be 
maximized to be close to 1 when MI1 is utilized as 
an objective function for clustering DSMs. By do-
ing so, the DSM clustered maximizing MI1 shows 
which components should be arranged around a 
component within a module. Also, one can know 
which components are placed near the module 
boundary. For example, if there exists the interac-
tion between two components contained within 
two different modules respectively, then the two 
components are arranged near the boundaries of 
each module so that they can be placed near each 
other. The sequence information of components 
within each module can also be utilized to archi-
tect product families that contain shared compo-
nents and modules based on this clustering.

MI2 represents a modularity index for the 
independency of each module. MI2 is formulated 
as follows:

(2)

where in
iCS  is the sum of interaction values with-

in ith modules; out
ijCS is the sum of interactions 

between ith and jth modules; m is the number of 
modules; and ε is a very small positive number. As 
shown in Figure 1(b), MI2 is usually bounded be-
tween 0 and 1. MI2 closer to 0.0 indicates a higher 
degree of the module independency. In Figure 
1(b), a large dot within a DSM represents a greater 
interaction value than a small dot. In some cases, 
MI2 might be greater than 1 if the sum of the 
interaction values between modules is greater 
than the sum of the interactions between compo-
nents within a module. In Equation (2), ε(N-m) is 
utilized to obtain the clustering result including 
more divided modules among the clustering re-
sults with the same MI2 values when the proposed 
modularity indices are used as the objective 
functions for optimizing DSMs. ε is usually set as 
a sufficiently small positive number such as 10-8.

The proposed modularity indices can be uti-
lized as the objective functions when optimizing 
DSMs. Since we should maximize MI1 and min-
imize MI2 simultaneously to reach an optimized 
clustering result, a scalarization function was 
employed to formulate the optimization problem 
as follows: 

2

1

MIf
MI

=
           

 (3)

By using Equation (3) as the fitness function of 
the proposed GA, we can obtain optimal DSMs 
including the maximized interactions within 
modules and the minimized interactions between 
modules.

2.2 Genetic Algorithm

This section introduces a search strategy using 
a genetic algorithm (GA) for clustering DSMs. 

To reduce the computation time of 
the GA, we developed a GA using an 
extended chromosome approach and 
modified operators for the chromo-
some. 

In this study, the extended direct 
encoding chromosome, which can hold 
two kinds of information in a single 
chromosome, is defined based on a 
method suggested by Jung et al. (2013). 
We modified their chromosome defini-
tion method in order for each chro-
mosome to have the same string size. 
The extended chromosome consists of 
two parts. The first part of the chromo-
some includes the information on the 
sequence of each component, and the 
second part holds the information on 
the dividing points between modules. 
The string size of the first part is N, 
and the size of the second part is N-1 
because the number of modules can 
be changed from 1 to N during the 
clustering process. For example, as 
shown in Figure 2, A–H represent each 
component, while 3 and 6 represent the 
dividing points between the modules. 
Since the first and second dividing 
points are 3 and 6, respectively, the 
first, second, and third modules include 
elements A to C, elements D to F, and 
elements G and H, respectively.

In the proposed GA, the three oper-
ation processes of selection, cross-over, 
and mutation are conducted repeatedly. 
First, a deterministic selection (Bäck, 
1996), which is one of the selection 
methods used in existing GAs, was 
employed. 

As for the cross-over, two kinds 
of cross-over methods are applied 
simultaneously to the two parts of the 
extended chromosome. The sub-
tour-chunking cross-over (Gen and 
Cheng, 1997; Grefenstette, 1987) op-
erates in the first part of the chromo-
some, and a modification of the one-
cut-point cross-over (Gen and Cheng, 
1997) is used in the second part of the 
chromosome. Specifically, the sub-
tour-chunking cross-over can generate 
more mixed offspring as well as main-
tain similarly the original positions of 
each chunk selected from parents. The 
subtour-chunking cross-over method is 
known to give better results compared 

FIGURE 1. MI
1
 and MI

2
 values for interaction patterns of DSMs

(A) MI
1

(B) MI
2

parent 1 10 0 0D E F GA B C H 74 5

parent 2 0 0 0A C BD F G E 0H 2 3 6
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parent 2 0 2 0A C BD F G E 0H 6 3 0

of f spring D G AC

Choose chunks Cut

B
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Choose chunks S plice
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of f spring D G ACBF H E 04 0 5 02 0

of f spring D G ACBF H E 00 0 0 52 4(continued)

A B C D E F G H 0 0

Module 3Module 2Module 1

dividing
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0 0 0 3 6

FIGURE 2. Extended Chromosome

FIGURE 3. Crossover for the extended chromosome

to other kinds of direct 
encoding cross-overs (Gen 
and Cheng, 1997).

An example of the 
proposed cross-over using 
the extended chromosome 
follows based on Figure 3.

ff 1. Chunks (B C D) and 
(G A C B) are chosen 
from each first part 
of two parents. In the 
second part, the genes are jumbled.

ff 2. The chunk (B C D) is placed into 
the offspring so as to maintain the 
original position in the Parent 1, and 
the chunk (G A) except the overlapped 
components B and C is placed to 
the right of the chunk (B C D). 

ff 3. The chunk (A) is chosen from the first 
part of Parent 1. However, the chunk 
is not used because (A) already exists 
in the offspring. An arbitrary point 
as the cut point of the second part is 
selected. The number of genes after the 
cut point in Parent 1 and before the cut 
point in Parent 2 should be the same.

ff 4. The chunk (D F) is chosen from the 
first part of Parent 2, but only the chunk 
(F) except the overlapped component D 
is placed into the offspring. The cut point 
of the second part is selected as well.

ff 5. The chunk (G H) is chosen from the 
first part of Parent 1, but only the chunk 
(H) is placed in the seventh position. 
Also, the first chunk in the second part 
of Parent 1 is placed into the offspring 
in the same position as in Parent 1.

ff 6. The chunk (E H) is chosen from the 
first part of Parent 2, but only the chunk 
(E) is placed in the last position. Also, 

the first chunk in the second part of 
Parent 2 is spliced to the offspring.

ff 7. The genes in the second part of the 
offspring are sorted in ascending order. 

In the case of mutation, the swap-
ping and altering method from (Jung et 
al., 2013) is modified and applied to the 
clustering problem here.

The computational procedure of the 
GA is as follows. In Step 1, an initial 
DSM is defined. In Step 2, the param-
eters such as mutation probability and 
population size are initialized. In Step 
3, an initial population is generated in 
accordance with the given population 
size. In Step 4, Equations (1)-(2) are 
used to evaluate MI1 and MI2 for the 
DSM of each individual generated ac-
cording to the population size. In Step 
5, Equation (3) is employed to evaluate 
the fitness function f for the DSM of 
each individual. In Step 6, the individ-
ual with the smallest fitness function 
is selected, and convergence to the 
optimum is checked. In Step 7, the 
operations (selection, cross-over, and 
mutation) of the GA are performed to 
generate a new population, and the GA 
returns to Step 4.
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3.	Case Study
In order to validate the perfor-

mance of the proposed method, an 
existing test product to define modular 
architecture was chosen as the case 
study for this paper. The product is a 
Black & Decker model CHV 1210 Dust-
buster® (Borjesson and Hölttä-Otto, 
2012), which is seen in Figure 4. Borjes-
son and Hölttä-Otto (2014) introduced 
the disassembled structure of this 
product in detail. The Dustbuster CHV 
1210 consists of 57 components (Table 
1) and use 0-1 interface representation 
where 1 indicates a connection (i.e., 
an interface exists) and 0 indicates no 
connection (Browning, 2001).

In this paper, the clustered DSM 
and the resulting modules obtained 
using the proposed method are com-
pared to the clustered DSM result in 
reference. Figure 5(a) shows the clus-
tered DSM for the Dustbuster CHV 
1210 from (Borjesson and Hölttä-Otto, 
2012), and Figure 5(b) shows the new 
clustering result. As shown in Figure 
5(a) from the previous clustering result, 
the system was decomposed into too 
many small clusters which cannot 
constitute a module, even though the 
Dustbuster is a small electro-mechan-
ical product. The module planning, 
development, manufacturing, etc. 
based on the defined modules contain-
ing only two or three components do 
not make sense. On the other hand, 
in the DSM clustered by the proposed 

FIGURE 4. The disassembled structure of 
Dustbuster (Borjesson and Hölttä-Otto, 2014) 
and the module boundaries obtained using 
the proposed method

TABLE 1. The resulting modules and components of the Dustbuster

(Borjesson and Hölttä-Otto, 2012) Proposed method

Module No. Component Module No. Component

M1 1 Battery bay left NM1 54 Button cam receiver
2 Battery bay right 55 Button cam device

M2 3 Clam shell left NM2 19 Vortex generator
4 Clam shell right 20 Nozzle air duct
5 Dirt bowl receiver 21 Dust flap
6 Escutcheon 22 Nozzle release holder
7 Exhaust duct 18 Nozzle
8 Exhaust grate 17 Nozzle release latch
9 Impeller housing 44 Nozzle release latch receiver
10 Impeller 46 Dirt bowl
11 Motor bracket 16 Nozzle release spring
12 Wall hook receiver 45 Dirt bowl release latch

M3 13 Wall hook 42 Filter media
14 Wall mount 43 Filter media holder

15 Grooves NM3 35 Transistor

M4 16 Nozzle release spring 34 Resistor
17 Nozzle release latch 33 Rectifier Diode
18 Nozzle 36 Printed Circuit Board
19 Vortex generator 32 Light Emitting Diode
20 Nozzle air duct 31 Low voltage AC connector female
21 Dust flap 28 Power button
22 Nozzle release holder 27 Styling handle

M5 23 Dirt bowl release spring 25 Anti-theft device
24 Dirt bowl release button 24 Dirt bowl release button
25 Anti-theft device 23 Dirt bowl release spring

26 Structural handle 26 Structural handle
27 Styling handle 56 Microswitch bracket
28 Power button 57 Microswitch

M6 29 Low voltage AC connector male 29 Low voltage AC connector male
30 Leads 37 Motor terminals
31 Low voltage AC connector female 49 Battery pack terminals

M7 32 Light Emitting Diode NM4 50 Battery cell rechargeable
33 Rectifier Diode 48 Shrink wrap
34 Resistor 47 Battery cell blank

35 Transistor NM5 30 Leads
36 Printed Circuit Board 15 Grooves

M8 37 Motor terminals 51 Transformer
38 Vibration damper 53 Encapsulation
39 Electric motor 52 Power plugs
40 Motor shaft 14 Wall mount

M9 41 Motor cover 13 Wall hook

42 Filter media NM6 5 Dirt bowl receiver
43 Filter media holder 2 Battery bay right

M10 44 Nozzle release latch receiver 1 Battery bay left
45 Dirt bowl release latch 12 Wall hook receiver
46 Dirt bowl 4 Clam shell right

M11 47 Battery cell blank 8 Exhaust grate
48 Shrink wrap 3 Clam shell left
49 Battery pack terminals 6 Escutcheon
50 Battery cell rechargeable 7 Exhaust duct

M12 51 Transformer 9 Impeller housing
52 Power plugs 10 Impeller
53 Encapsulation 11 Motor bracket

M13 54 Button cam receiver 41 Motor cover
55 Button cam device 39 Electric motor

M14 56 Microswitch bracket 38 Vibration damper
57 Microswitch 40 Motor shaft

method, the total number of modules is six and each module 
contains more components than the previous result. This 
new clustering result is reasonable in view of structure as 
shown in Figure 4, and each module consists of the compo-
nents with the strong interactions each other.

We next evaluated the types of components contained 
within each module and the sequence of the components as 
well. For example, the newly defined module NM2 contains 
the components related to nozzle and filter. In the NM2, the 
components related to nozzle are closer together than other 
components and the filter-related components are closely 
placed each other. A similar phenomena in the sequence of 
components is also observed in other modules. As stated 
previously, the Dustbuster example just used 0-1 representa-
tion for interfaces between components in the DSM. If we 
utilize an advanced design dependency measure to represent 
interfaces, then we expect to obtain more accurate modular 
architecture results using the proposed method.

(Borjesson and  
Hölttä-Otto, 2012) Proposed method

Rate of active cells within 
modules

(# of active cells within 
modules /

# of total active cells)

69.2% (119/172) 87.8% (151/172)

MI
1

0.877 0.913

MI
2

0.099 0.066

TABLE 2. Comparison of the rate of active cells within modules and 
modularity indices

Table 2 shows a comparison of modularity index MI1 and 
MI2 values and the number of active interface cells within 
modules. Similar to MI1 and MI2, the rates of active inter-
action cells within modules were also compared in order 
to check the modularity of the DSMs. Consequently, we 
observed that MI1 and MI2 values and the rate of active cells 
within modules of the new DSM are better than those of the 
previously clustered DSM as shown in Table 2. Thus, more 
components within each module were closer to the diagonal 
of DSM and the number of interactions between modules 

was also reduced as shown in Figure 
5(b).

4.	Concluding Remarks
In this research, we proposed new 

modularity indices and investigated 
their impact using a new clustering 
method to drive module definition. The 
modularity index MI1 measures the 
closeness to the diagonal of a DSM, and 
the value of MI1 is always determined 
between 0 and 1 regardless of the size 
of the DSM. MI2 captures the inde-
pendency of each module in a clustered 
DSM. Thus, MI2 closer to 0.0 indicates 
a higher degree of module independ-
ency. The two modularity indices were 
utilized as the objective function for 
optimizing a DSM. As a search strate-
gy, we developed a GA using an extend-
ed chromosome, which contains two 
kinds of information: (1) the sequence 
of each component and (2) the dividing 
points between modules. The meth-
od for operating cross-over between 
the extended chromosomes was also 
described.

An existing test product in the 
literature was chosen to validate the 
performance of the proposed method. 
Comparing the new clustering result 
to the previous result in the literature, 
we observed that the MI1 and MI2 
values of the DSMs clustered by using 
the proposed method are better than 
those of the previous DSMs. Thus, the 
new clustering results indicate a higher 
degree of the modularity on the strong 
interactions between components 
within each module (i.e., closeness 
to the diagonal of DSM) and module 
independency. The results also showed 
that module definition with the pro-
posed method structurally yields more 
reasonable modular architectures. The 
suggested clustering method is expect-
ed to be effective for defining prelim-
inary modules in component-based 
system architectures.
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FIGURE 5. The 
clustered DSMs 
and the resulting 
modules of the 
Dustbuster

B. The clustered DSM 
obtained using the 
proposed method

A. The clustered DSM 
in Ref. (Borjesson and 
Hölttä-Otto, 2012)


