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r   A B S T R A C T 

This paper presents a new spectral clustering and partitioning based software tool for the identification of modules in de-

sign structure matrices. The MATLABÒ-based software can identify the globally optimal number of modules in the design 

structure matrix and identify overlapping and hierarchically overlapping modules. The software tool provides the capabil-

ity for the modeler to vary the level of granularity of the analysis so as to obtain either a high-level or a granular view of 

modularity at the components, sub-systems, or system levels, the number of levels defined arbitrarily. It also provides the 

modeler with the flexibility of visualizing the membership of overlapping components to modules in terms of continu-

ously varying membership strength. A link is provided for interested readers to download the software.

CLUSTERING Techniques Development
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A SPECTRAL 
ANALYSIS
SOFTWARE TO
DETECT MODULES
IN A DSM

identify a globally optimal clustering (Borjesson 
and Hölttä-Otto, 2012; Helmer et al., 2008). 
Given the computational efficiency challenges 
associated with stochastic algorithms, other 
researchers have proposed qualitative, heu-
ristic-based methods for identifying modules 
based on sub-functions related by flows (Stone 
et al., 2000), which have been shown to be 
applicable to both small-scale and large-scale 
systems (Day et al., 2009).

Associated with the problem of identify-
ing modules is the problem of quantifying the 
degree of modularity of a DSM, that is, a metric 
to quantify how many modules exist, if any. Di-
vergent results exist depending upon the level at 
which to identify modules (part, sub-system, or 
function). In one study, the Singular Modularity 
Index (SMI) is presented as the preferred metric 
of modularity when assessing modularity from 
a functional perspective (Hölttä-Otto and de 
Weck, 2007), but a more recent paper proposes 
that the Whitney Index (WI) is a more suitable 
metric for assessing modularity from a compo-
nent perspective (Van Eikema Hommes, 2008). 
Alternatively, Wang and Antonsson (2004) 
propose an information-theoretic measure of 
modularity that is independent of module type. 
At a component level, Sosa et al. (2007) recom-
mend centrality-based measures of component 
modularity. At a sub-system level though, the 
same authors developed a different approach 
(Sosa et al., 2003). The lack of a uniform metric 
for modularity can result in methods for pro-
ducing and identifying modules to yield diver-
gent results (Chiriac et al., 2011; Hölttä and 
Salonen, 2003).

It is thus a rather open problem as to the ap-
propriate method for finding modules and the 
appropriate metric that can provide integrated 
insights into the modularity of a given system 
(system modularity) or of a set of components 
(component modularity) at any desired level of 
abstraction, since these two problems go hand-
in-hand (Gershenson et al., 2003).

In this paper, we present a new software 
tool to identify modules in a DSM based on 
the spectra (the set of eigenvalues) of matrices, 
graphs, and networks. The method stems from 
a long history in graph theory to infer relations 
between the spectral and structural proper-
ties of a graph by studying the eigenvalues and 
eigenvectors of a matrix associated with the 
graph (Biggs, 1994; Cvetković et al., 1995).

The organization of the paper proceeds in 
the following manner. First, we summarize 
the mathematical foundations of graph spec-
tra methods and how they provide a global 
view of connectivity structure without losing 
local information. Second, we briefly review 
the mathematical proofs associated with our 
method for identifying modules in networks, 
whether unipartite or bipartite, thus making 
the approach suitable for application on single 
and multi-domain design structure matrices 
(DSMs, DMMs, and MDMs). We then present 
some case studies demonstrating the use of the 
research software on synthetic and real world 
modular, hierarchical modular, overlapping 
modular DSMs. We conclude with potential 
extensions to the software to suit various DSM 
analyses.

2. Mathematical Foundations
Detecting modules in design structure 

matrices is a key step in various types of anal-
yses (Browning, 2001), including determining 
suitable interfaces between sub-systems (Sosa 
et al., 2007), finding architectural platforms for 
products (Gao et al., 2009) and their associated 
project plans (Xu and Jiao, 2009), and deter-
mining task groups to minimize the potential 
for rework (Browning and Eppinger, 2002). The 
problem also occurs in matrix-based design de-
composition to simplify design problem formu-
lations (Alfaris et al., 2010; Li, 2010). As such, it 
is a problem of broad interest and significance 

r Somwrita Sarkar
Design Lab, University of 
Sydney, Australia. 
somwrita.sarkar@sydney.edu.au

r Andy Dong
Faculty of Engineering 
and Information 
Technologies, University 
of Sydney, Australia

andy.dong@sydney.edu.au

1. Introduction
The identification of modules in 

a design structure matrix (DSM) is 
a fundamental step in the applica-
tion of DSMs. Research in methods 
for identifying modules in design 
structure matrices (DSMs) has been 
continuing. The basic idea underly-
ing module detection algorithms is 
to cluster elements in the DSM such 

that elements that are highly cou-
pled among each other but relatively 
weakly coupled to other elements 
appear together in the same module. 
Existing methods operate iteratively 
by adding or removing elements to 
modules and then calculating met-
rics that quantify the strength of the 
clusters or by partitioning matrices 
according to various dependency 
metrics. Because these methods are 
locally greedy, some methods utilize 
stochastic hill-climbing algorithms to 
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in complex systems engineering. The problem 
of finding modules in design structure matrices 
shares similar properties with the general prob-
lem of finding modules in complex networks or 
graphs that represent social relations, biological 
systems, or computer networks. The basic prob-
lem is to identify communities of elements that 
share common properties by using only the in-
formation encoded in the graph representation. 
Despite deep interest in this problem across 
multiple disciplines, the problem is still not 
considered ‘solved’ (Fortunato, 2010) including 
the problem of identifying modules that are 
very small in scale relative to the network size 
(Fortunato and Barthélemy, 2007).

Spectra and network structure

Spectral methods rely on the eigenvalues of 
matrix representations of networks, and cap-
ture global information on structure. The basic 
premise is that networks have distinct spectra 
and hence the spectra are ‘fingerprints’ of net-
work topology (Farkas et al., 2001). Researchers 
extended these results to study modularity and 
hierarchy using scale-free hierarchical modular 
networks (de Aguiar and Bar-Yam, 2005).

We recently proved that the spectra of net-
works also fingerprint the number of modules, 
the number of hierarchical levels of modules, 
and the exact modular composition of a net-
work and determines the limit of resolution 
for module detection (Sarkar and Dong, 2011; 
Sarkar et al., 2013b), findings that have also 
been independently reported by other research-

ers (Newman, 2013; Peixoto, 2013). Our insight 
is that the number of linearly independent 
eigenvectors is related to the number of mod-
ules in the network, an insight that has been 
partially explored by others (Platanitis et al., 
2012). We have exploited this finding to identi-
fy modules in a complex product architecture 
(Sarkar et al., 2013a).  

We briefly review the concepts behind the 
mathematical proof of our method, and refer 
the reader to the other publications for the 
details of the formal proof. We proved that the 
gaps between clusters of closely spaced large 
eigenvalues that are well separated from the 
bulk distribution of eigenvalues around the 
origin reveal the number of hierarchical levels 
and the number of modules at each hierar-
chical level. In addition, we proved that for L 
hierarchical levels, the expected values of the 
largest eigenvalues separated from the bulk 
of eigenvalues follow a specific pattern based 
on the hierarchical structure of the network. 
One of the strengths of our approach is that if 
there is no modular organization in the DSM, 
the spectra will show exactly 1 large eigenvalue 
well separated from the bulk; such a DSM has 
the properties of a random network, wherein 
modules do not occur other than by chance. We 
derived analytical expressions for the mean val-
ues of these largest eigenvalues, thus providing 
an algorithm and metric independent manner 
of characterizing the hierarchical modularity 
of networks. By combining these analytical 
derivations, we produced a generalized meth-

od for detecting the modular organization of 
networks at multiple hierarchical levels (Sarkar 
and Dong, 2011; Sarkar et al., 2013b).

Spectral analysis for modularity detection

Our spectral method for detecting modules 
in networks, or equivalently matrices, oper-
ates in the following manner. Here we briefly 
summarize the method, but for full details, see 
(Sarkar and Dong, 2011; Sarkar et al., 2013a)

First, the modeler produces a square or 
rectangular matrix representation of a system, 
that is, a single domain design structure matrix 
or a multi-domain design structure matrix. 
The values in the matrix can either be binary or 
positive integers (i.e., weighted). Figure 1 shows 
examples of a synthetically produced modular 
DSM, a modular DSM with overlapping mod-
ules, and a hierarchically modular DSM. In 
each of these examples, white matrix elements 
indicate a strong relationship, say 1, and ele-
ments in black represent no relation, say 0. The 
algorithm also accepts weighted representa-
tions, so the connectivity can be numerically 
graded. 

Next, the software either performs an 
eigenvalue or singular value decomposition of 
the matrix depending upon whether the matrix 
is square or rectangular, unipartite or bipartite, 
respectively. Eigenvalue decomposition is used 
for weighted or unweighted symmetric square 
matrices. Singular value decomposition is used 
for weighted or unweighted bi-partite rectan-
gular matrices or asymmetric square matrices. 
The eigenvalues are ordered in decreasing value, 
along with the corresponding eigenvectors. 

The main idea now is to express the position 
of each node as a vector in space, such that the 
distance between two nodes in this space is a 
measure of the strength of their connectivity. 
This is done by expressing each node or com-
ponent as a vector in space defined as a linear 
combination of the k-largest eigenvectors multi-
plied their corresponding k-largest eigenvalues. 
Thus, the software performs a dimensionality 
reduction on the original DSM by preserving 
the k largest eigenvectors and eigenvalues to 
produce a reduced approximation of the DSM. 

The choice of the k value is guided by the 
findings on the separation of large eigenval-
ues; each k value corresponds to the number 
of modules at a specific level of hierarchy. In a 
perfectly modular network, the value of k is ex-
actly the number of modules in the network. In 
practice, the choice of the value of k can be left 
to the choice of the modeler, wherein a small 
value of k results in a high-level view of the net-
work (i.e., k large modules) whereas a large value 
results in a granular view of k smaller-sized 
modules. The value of k can be increased up to 
the limit of module detection. The choice of k 
is similar to the post-processing step described 
by Helmer et al. (2008) wherein modelers can 
merge modules. Decreasing the value of k has a 
similar effect.

In the final step, to identify the modules, 
dot products are computed between all the 
k reduced vector representations of nodes in 
the lower k-dimensional space. The higher the 
cosine between two node vectors, the higher 
the probability that they belong to the same 
module. We developed a simple matrix re-or-
dering algorithm to reveal the highly connect-
ed groups of nodes along the block diagonal. 
Thus, as shown in Figure 1(c), the modules reveal 
themselves as the white blocks off the main 
diagonal. Horizontally or vertically from the 
modules in off-diagonal positions, the elements 
represent inter-module connections, that is 
connections between nodes across modules. 
The more inter-module connections, the more 
integrated the DSM.

We have coded up the algorithm into a 
research tool, which we present next followed 
by a set of case studies on its operation with a 
synthetic and real-world DSM.

3. Software Operation
The software consists of a set of MAT-

LABÒ-based functions, and is available for 
download by contacting the authors. It will 
shortly be made available via a University we-
blink. Four functions, and associated m-files, 
are provided: (1) cosineMeasure.m (supporting 

FIGURE 1: EXAMPLES OF DSMS. (a) synthetically produced modular DSM with 64 nodes and 4 modules. (b) syntheti-
cally produced DSM with 128 nodes and 5 modules with nodes sharing overlaps with multiple modules generated using 
software from Lancichinetti and Fortunato (2009); original data is randomly ordered, with no modules or overlaps visible. 
(c) The synthetic DSM shown in (b) is input into the software we present in this paper and the output can be seen as a 
reordered DSM, showing the 5 modules as well as overlapping nodes between modules. (d) synthetically generated DSM 
with 128 nodes and 4 hierarchical levels with decreasing strength of connectivity with each level.
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file to main files; calculates the cosine value be-
tween the lower dimensional vector representa-
tions of nodes), (2) reorder.m (supporting file 
to main files; re-orders matrix elements based 
on cosine similarity values to detect modules), 
(c) communityDetect_square.m (main file for 
square, symmetric DSMs), and (4) communi-
tyDetect_rectangular.m (main file for square 
asymmetric or rectangular DSMs).    

The following is the list of steps for operat-
ing the software: 
1. Input the DSM, square or rectangular in form (for 

single or multi-domain cases), as a MAT file. 

2. Load the MAT file into MATLABÒ. 

3. Run either of the two main files by first 
setting k = 2. For full command line 
syntax, use the MATLABÒ help tool.

4. The program will plot the scree plot for 
the eigenvalues (or singular values). 

5. Observe the gaps in the spectra and choose 
appropriate k values with the largest gaps. 

6. Re-run the main file at these k values.

7. The program outputs the modules, both in 
the form of the original ordering of nodes, and 
nodes re-ordered to show the detected modules. 
These matrices capture the cosine similarity 
values, higher values are shown in red (close 
to cosine values of 1), lower values are shown 
in blue (close to cosine values of -1). Thus, red 
clusters show the presence of modules. 

8. Hierarchical clustering and overlapping nodes 
can be detected using multiple k values, to 
be demonstrated in the next section.

4. Case Studies
Here we demonstrate the use of the software 

to detect hierarchical modularity in a syn-
thetically generated network, and overlapping 
modularity in the Ford Climate Control System 
DSM. Since we have already shown the appli-
cation of the method elsewhere on much larger 
systems (Dong and Sarkar, 2012; Sarkar and 
Dong, 2011; Sarkar et al., 2013a; Sarkar et al., 
2013b), we specifically choose the Ford Climate 
Control System DSM for its historical signifi-
cance and small size through which we are able 
to demonstrate the method visually. 

Hierarchical Modular DSM

In this first example, we show how the 
software can assist the modeler to examine the 
modularity of a DSM at various levels of gran-
ularity without needing to know a priori how 
many modules exist, if any. A synthetic hier-
archical modular DSM was constructed using 
the stochastic block network generation model 
(Sarkar et al., 2013a; Sarkar et al., 2013b). Figure 
4(a) shows the DSM image. This DSM has 128 
nodes and exactly three levels of hierarchy in 
its modular organization, with 8 modules of 
16 nodes at the lowest level of granularity, 4 
modules of 32 nodes at the second level, and 2 
modules of 64 nodes at the third hierarchical 
level. 

Figure 3 shows the plot of the eigenvalues of the 
DSM output by MATLABÒ. Note the large gaps 
between the 2nd, 4th, and 8th eigenvalues and their 
separation from the bulk of the spectrum. This 
signifies that there are 8, 4, and 2 modules at three 
hierarchical levels, as expected.

Now, running the code with k set to 2, 4, and 8, 
respectively, brings out the modules at these hierar-
chical levels. When the value of k is set at 2, only the 
high-level module is identified and visualized; as the 
value of k is increased, the other levels of hierarchi-
cal modularity become evident. Figure 4 shows the 
original DSM and modules correctly identified at the 
three hierarchical levels.

Note that choosing any other (incorrect) value 
of k around the “right” values will still result in the 
algorithm showing the correct number of modules. 
In other words, the software will not identify more 
modules than are actually present in the DSM, up 
to the limit of modularity detection. Based upon 
the capabilities of the software, we recommend 
that modelers create a DSM at the lowest level of 
granularity possible, such as down to the smallest 
practicable part or component. The software will 
identify the various levels of hierarchical modularity 
within which the part is embedded, such as a set of 
bolts connected to a plate (one module) connected 
to a support beam (which, along with the plate/bolt 
module, can be another module).

Real-World DSM

Figure 6(a) shows the Ford Climate Control Sys-
tem DSM (Example 3.1, (Eppinger and Browning, 
2012)). This is a classic example, since it is often cited 
as the first product based DSM ever produced. The 
interesting feature of the Ford DSM is that it has a 
number of overlapping modules, and is small enough 
for a detailed demonstration. We use it to demon-
strate the operation of the software.

The Ford DSM shows 4 types of interactions in a 
single DSM, showing spatial adjacency, energy flow, 
materials, and information flow between 16 compo-
nents of a car climate control system. Figure 5 shows 
the eigenvalues for the materials DSM, with only 10 
of the 16 components. Note that despite the small 
size of the system, 3 large eigenvalues appear, signa-
ling the appearance of 3 modules in the system. This 
is a consistent feature of the approach that scales to 

FIGURE 3. Eigenvalues of the hierarchical DSM, gaps between the eigenvalues show the hierarchical structure of the DSM. (Last few eigenval-
ues, up to the 128, have not been shown for sake of clarity in representation). 

FIGURE 4. Results of modularity detection on hierarchical DSM using software. (a) orig-
inal DSM plotted using function imshow(). (b),(c),(d) Modules output from software by 
setting k = 2, 4, and 8, respectively.

FIGURE 5.

FIGURE 6. Results of modularity analysis on Ford 
Climate Control System DSM using software.

very large system sizes; we have applied the 
algorithm to a Pratt and Whitney aircraft 
engine example in (Sarkar et al., 2013a), and 
to process DSMs that go up to about 900 
nodes in (Dong and Sarkar, 2012). We have 
also applied the same approach to complex 
networks, with number of nodes ranging up 
to thousands (Sarkar and Dong, 2011; Sarkar 
et al., 2013b). In each case, we have found 
that the number of outlying eigen or singular 
values, separated from the bulk of the spec-
trum, provides a good estimate of the actual 
number of modules in the system.

Figure 6 shows the results of the modular-
ity analysis. Three main modules are identi-
fied, which are also identified in the original 
source literature: (1) Front-end air module: 
Components A, B, and E, (2) Refrigerant 
module: Components E, F, I, and H, and (3) 
Interior Air module: Components H, C, P, O, 
and G. Note that components E and H clearly 

A. Original DSM B. 3 modules detected after re-ordering 
at nodes by setting k = 3. Red shows 
high connectivity, Blue shows low 
connectivity, overlapping nodes E and H 
show mid-strength connectvity to two 
modules.

A. Eigenvalues of the Ford 
Climate Control System DSM

B. Definition of components 
in the Materials DSM
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emerge as overlapping components shared by 
two modules. This is measured, as described 
in the algorithm and software section, as the 
cosines between vectors representing nodes 
in lower dimensional k-space, and is visually 
depicted using colors in Figure 6(b): red shows 
maximum connectivity between nodes in mod-
ules, blue shows minimum connectivity, and 
other shades show mid-strength connectivity 
(according to color bar).

As is seen, component E (Condensor) emerg-
es as an overlapping component between the 
first two modules (Front-end air module and 
Refrigerant module), and component H (Evap-
orator core) emerges as an overlapping compo-
nent between the last two modules (Refrigerant 
module and Interior Air module). 

In addition, in our analysis, components B 
(Engine Fan) and P (Blower Motor) also emerge 
as mildly overlapping with modules 2 and 3, 
respectively, but not to the same degree as E 
and H: the numerical strength of connectivity, 
measured in terms of the cosines, is lower but 
not negligible. This feature is an important 
part of our algorithm: it allows nodes to have 
continuously varying “degrees” of membership 
to modules, and therefore, the modeler can see 
that certain components can be part of modules 
to varying degrees and with varying strength. 
As a result, when the modeler makes a decision 
as to which component should belong to which 
module, that decision can be better informed 
by seeing the varying strengths with which 
components in the overlap region belong to 
each module. In this specific case, for example, 
the modeler explicitly chose component H to sit 

in both modules 2 and 3, but chose component 
P to sit only in the module 3.

5. Conclusions
We have presented a method and research 

software tool for the detection of modules in 
DSMs. In addition to being very computation-
ally efficient, as many DSM modularity iden-
tification problems would require less than a 
few seconds of compute time, the tool correctly 
identifies the right number of modules in the 
DSM.

We believe that several potential enhance-
ments to the software tool are possible. First, 
the matrix re-ordering algorithm is based upon 
a simple cosine measure of similarity. Re-
searchers can modify this similarity calculation 
without affecting the operation of the software, 
and, in so doing, take into account particular 
meanings about numerical values in the DSM. 
We note that the numerical values in the DSM 
are taken to be nominal rather than categorical. 
Second, while we have provided a matrix based 
visualization mechanism to identify interface 
nodes by visualizing the cosine values, it would 
clearly be advantageous if the software could 
be easily extended to list the interface nodes. 
Finally, the software tool could be extended for 
use on multi-level high-definition design struc-
ture matrices (Tilstra et al., 2012) by incorpo-
rating the higher-order singular value decom-
position (de Lathauwer et al., 2000) in place of 
the EVD/SVD on a two-dimensional DSM.


