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MODULARITY STUDY

r   A B S T R A C T 

We propose a new principle of modularity for product design in cases where functions and constraints contribute to mod-

ularity. A modularity matrix is defi ned as a set of permissible ranges for both functions and constraints. We prove that a 

design structure matrix (DSM) of physical components for functions is equivalent to a modularity matrix of axiomatic de-

sign (AD). Next, from statistical mechanics, we introduce entropy for selected modules with constraints after regularizing 

a modularity matrix by a new parameter. This concept of entropy highlights the number of possible options to realize the 

optimal value of a product. We show that the two limits of the entropy are logically equivalent to modularizations of real 

option theory and information axiom in DSM and AD. From the principle of entropy maximization, we clarify the manner 

in which the matrix elements of modularity matrix should change in order to realize the highest�value of products. 
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across diff erent base vector spaces, which are referred to as 
domain mapping matrices (DMMs) and multiple domain 
matrices (MDM) (Jacobides and Winter 2005; Danilovic and 
Browning 2007; Baldwin, 2008, Lindemann et al., 2009; Luo 
et al., 2009). 

FIGURE 1: Example of a DSM when exchanging the order of modules

� e second defi nition was formulated by Ulrich (1995) 
and includes a shift in emphasis from mapping physical 
components to functional requirements; this approach was 
theoretically systematized by Suh (2001) as a general frame-
work to analyze the interplay between the diff erent vector 
spaces, and can be called axiomatic design theory (AD). 
Interaction in AD is defi ned by a mathematical approach 
to the mapping of the physical components and functional 
requirements in order to optimize product design. We fi nd 
many applications of AD, for examples product, software, 
supply chain, manufacturing systems in the reviews (Kr-
ishnan et.al., 2001, Kulak et.al., 2010). Although these two 
theories (DSM and AD) have been developed independently 
towards almost the same goal, a crucial problem is that the 
relationship of DSM and AD, as well as the diff erences of 
their models, largely remains unclear, despite that Dong and 
Whitney (2001) and Tang et al. (2009) have addressed the 
topic. One objective of this paper is to clarify equivalence of 
the modularity matrices of DSM and AD and the applicable 
ranges of these theories. 

Another problem tackled in this paper is how constraints 
can change modularity. Previous studies on the modularity 
theory often neglect the topic of constraints for products. 
In DSM, constraints must implicitly be imposed to realize 
products; in AD, constraints cannot be systematically in-
cluded within the theory. � ree types of constraints—phys-
ical, equipment, and operational constraints—are essential 
for the technological realization of products (Fujimura, 
2000). In this paper, we construct a modularity matrix for 
constraints as well as functions, which is useful for the study 
of how constraints contribute to modularity. 

 Moreover, we introduce a way to regularize a modularity 
matrix by means of a new parameter, entailing a capability 
to fi nd unknown and permissible ranges for functions and 
constraints. Entropy for the regularized modularity ma-
trix can be introduced with statistical mechanics. Here the 
concept of entropy points to the number of possible options 
within a system in order to realize the optimal value of prod-
ucts. We propose a new principle of modularity based on 
the principle of entropy maximization, which increases the 
value or performance of products. We verify our theory by 
the fact that two diff erent limits of this entropy are logi-
cally equivalent to the modularizations (real option theory 
and information axiom) of DSM and AD. Finally, we clarify 
how the principle of modularity can be used to understand 
changes in order to realize the optimal performance of 
products.

 � e organization of this paper is as follows. In Section 2, 
we briefl y review DSM, AD, and three types of constraints. 
In Section 3, we propose a new defi nition of a modularity 
matrix for functions and constraints and prove equivalence 
between the modularity matrices of DSM and AD. In Sec-
tion 4, we introduce a new parameter in order to regularize 
the modularity matrix and utilize statistical mechanics to 
propose new principles of modularity based on the principle 
of entropy maximization. Section 5 includes conclusions and 
future works.  

2. Literature review 
In this section, we briefl y review DSM, AD, and three 

types of constraints. 
� e fi rst item for review is DSM. Historically, Stew-

ard (1981) developed the fundamental theory of DSM and 
Eppinger (1991) applied DSM to concrete cases of product 
design. By use of DSM, which provides the mappings of the 
same vector space as the design parameters (DP) in Figure 
2, we can visualize the structures of systems for product 
design. In DSM, functions as well as constraints are implic-
itly satisfi ed to realize products. Matrix elements of DSM 
express the transfers of material, energy, and information 
among base vector space coordinates. As a defi nition of 
modularity, if the matrix elements of DSM are diagonal or 
block diagonal, then related products can be understood as 
“modular.” If the upper triangular matrix elements of DSM 
are zero, then the products are “hierarchical.” If the upper 
triangular matrix elements of DSM are not zero, then the 
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1. Introduction
Modularity has been explored as a useful method 

to classify designs, products, and industries by the use 
of technology. Modularity is defi ned by various types 
of modularity matrices on base vector spaces such 
as designs, tasks, organizations, functions, compo-
nents, products, and fi rms, for example (Krishnan and 
Ulrich, 2001; Browning, 2001; Eppinger and Browning 
2012). A modularity matrix has been mainly defi ned 
in two ways. � e fi rst defi nition includes the concept 
of a design structure matrix (DSM), which was invent-

ed by Steward (1981), developed by Eppinger (1991), 
and formulated by Baldwin and Clark (2000) both to 
analyze and manage the complex systems. � e DSM 
is a mapping between the same base vector space to 
visualize the structures of design systems (an example 
of which is found in Figure 1 when modules 2 and 4 are 
exchanged). Interactions within a DSM signify the 
transfer of material, energy, and information, which 
are defi ned in abstract terms and remain beyond the 
reach of facile mathematical defi nitions. We fi nd many 
applications of DSM, for examples product, organiza-
tion and process architectures in the reviews (Brown-
ing, 2001, Eppinger and Browning, 2012). Recent 
studies have analyzed the relationships among DSMs 
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products are “integral.” Baldwin et al. (2013) defi ned mod-
ularity strictly by range, which is expressed by the use of a 
transitive closure of DSM to successive power. In this paper, 
we adopt the defi nition of modularity by Baldwin et al. 
(2013). As applications to various products, several types of 
DSM have been proposed, including those addressing tasks, 
design parameters, physical components, fi rms, and sectors 
(Browning, 2001, Eppinger and Browning, 2012). In this pa-
per, DPs, physical components (PCs) and fi rms-sectors (FSs), 
which represent a business ecosystem (Baldwin, 2008), will 
be considered as base vector spaces of modularity matrices.   

 

be considered as base vector spaces of modularity matrices.   

FIGURE 2: Mapping DSM and AD

Baldwin and Clark (2000) established the basic theory 
for DSM to introduce six complete modular operators such 
as splitting, substituting, augmenting, excluding, inverting, 
and porting. For modularization, Baldwin and Clark (2000) 
proposed that one factor to determine the modularity of 
products is to increase the number of options for designs 
by applying real option theory. Here, we briefl y review the 
modularization of DSM. A distribution function f(x) of per-
formance for a base vector space coordinate x is  formance for a base vector space coordinate x is  

, 
where  is the standard deviation. A value of a product 

with one module V1 is  

 .             
When the standard deviation becomes larger, the value 

of the product increases linearly. For more general cases, we 
can consider Baldwin and Clark (2000).  

� e second item for review is AD. Notably, AD evolved 
from the optimization theory in order to determine design 
parameters satisfying maximization, minimization, and 
permissible ranges for functions. AD is useful to classify 
relationships between functions, or functional requirements 
(FRs), and PCs for product design. Here, the mapping of Ul-
rich (1995) is of interest (in Figure 2). Further details and the 

applications to various products are provided by Krishnan 
et.al.(2001) and Kulak et.al.(2010). In AD, constraints to real-
ize products have not been systematically introduced into 
the theory. Ulrich (1995) and Suh (2001) defi ned modularity 
from matrix elements of the mapping as FR and PC. When 
the matrix elements are diagonal, the products uncouple. 
When the upper triangular matrix elements are zero (or not 
zero), the products decouple (or coupled).  

Suh (2001) proposed two axioms in AD for product 
design. � e fi rst is the independence axiom to maintain the 
independency of FR. Generally, this independence axiom is 
considered to be equivalent to maintain the modularity ma-
trix of the mapping of FR�PC to be uncoupled. � e second is 
the information axiom to minimize the information content 
of product design, to realize the optimal design. Regarding 
the information axiom, the information content I is defi ned 
as a logarithm of probabilities 
the information axiom, the information content I is defi ned 

 for i=1,2,…,n, to realize the 
system such thatsystem such that

, 
where n is the number of modules in one system. For 

further details, we can consider the work of Suh (2001). 
� ird, we review three types of constraints such as 

physical constraints, equipment constraints, and operational 
constraints (Fujimura, 2000). Constraints signify the con-
ditions that must be satisfi ed in order to realize products. In 
Figure 3, we introduce a performance correlation diagram 
(Fujimura, 2000), which shows a hierarchy of technology, 
wherein physical, equipment, operational constraints exhibit 
an ordered, nested relationship. 

FIGURE 3: Performance correlation diagram

Physical constraints are conditions based on the fun-
damental law of science, and this includes physical and 
chemical phenomena. Equipment constraints are conditions 
dependent on the precision of the technological equipment 
made to realize products; this includes machines and mate-
rials. Operational constraints are conditions determined by 
establishing the parameters of working environments, such 
as ambient temperature and atmospheric pressure. � is also 
includes a consideration of related circumstances ideal in 
order to realize products, including the use of time. 

3. New Defi nition of
Modularity Matrix

In this section, we propose a new defi nition of modular-
ity matrix for functions and constraints and demonstrate 
the equivalence between the modularity matrices of AD 
and DSM for the functions on PCs, disregarding tasks and 
others. 

In the past, many conceptual studies for product design 
were developed within the context of creative thinking, 
system requirement engineering, product design and so on. 
An example of creative thinking is the “Geneplore Model” — 
proposed by Finke et al. (1992) – which is a cycling process 
between the generation phase and the exploration phase for 
new product ideas under product constraints. An example 
of system requirement engineering is “requirement spec-
ifi cation” — Loucopoulos and Karakostas (1995) — which 
constitutes an interrelated set of three requirements such 
as enterprise requirements, functional requirements, and 
non-functional requirements, some of which may be related 
to the product constraints. � us, it would be essential to 
consider functional requirement as well as constraints in 
both of creative and incremental processes of new product 
development.

First, we defi ne the modularity matrix for functions, 
whose matrix elements are parameterized by the permissible 
ranges of functions in order to realize a product. We con-
sider only small transformations around the initial values of 
functions. Namely, for design parameters {Xi} and functions 
{fi(X)}, which are functions of design parameters, we treat 
only small transformations {dXi} and {dfi(X)} (Yassine and 
Falkenburg, 1999). We assume that the numbers of various 
base vector spaces, such as DP and FR, are the same as n in 
one system, whose modules are labeled by i=1,2,…n. Gener-
ally, the optimization theory for product design states to fi nd 
a set of solutions to satisfy the following equations (Michele-
na-Papalambros 1995, Fujimura 2000).

dfi(X) =

na-Papalambros 1995, Fujimura 2000)

 ,

where  are parameters for permissible ranges of {dfi }. 
Here, we emphasize that to develop product design can be 
interpreted as fi nding a set of the solutions. 

We employ a useful idea to construct a modularity 
matrix from a Design Matrix, which is defi ned in terms of a 
mapping: DP→FR (Dong and Whitney, 2001). A new defi -
nition of modularity matrix Gfij is proposed as a mapping 
{dXi}→{dXi} as follows. 

,      

where is the inverse matrix of 

, and Kfkm is a diagonal matrix, whose matrix elements 

are parameters  for permissible ranges of {dfi} such that 

Kfkm =  for n modules. When the initial 

values of DP, denoted by {X0i}, are chosen, the initial values 

of functions, denoted by {fi(X0)}, and the sets of permissible 

ranges of {dfi } are determined uniquely. We note that the 

matrix  and the inverse matrix depend only on 

the initial value {X0i}. Moreover, each matrix element of Gfij 

can be considered as a set for the permissible ranges, and we 

express {Gfij} as a set of Gfij.

Next, we defi ne the modularity matrix Gcij for con-
straints as a mapping:{dXi}→{dXi} in a similar way to a 
modularity matrix for functions as follows. 

,    
where Kcij is a diagonal matrix, whose matrix elements are 

parameters  for permissible ranges of {dCi} such that Kcij 

= . 

 Modularity matrix Gij for both functions and constraints 
is defi ned as 

,           
where {Gij}, {Gfik} and {Gckj} express sets for the permis-

sible ranges. All matrix elements of {Gij} are defi ned by the 
intersections of two sets of matrix elements, {Gfik} and {Gckj}. 
One main reason for this defi nition of modularity matrix is 
that a product should be designed to satisfy functions after 
checking that it satisfi es constraints. 

Moreover, we can defi ne modularity matrices on PCs and 
FSs for functions and constraints in a way similar to that on 
DP. � e coordinates {Yi} of PC represent the descriptions 
of products, and the coordinates {Zi} of FS represent com-
pany names and brands. Relationships among modularity 
matrices on DP, PC, and FS are displayed in Figure 4, where 
functions are the same but constraints are diff erent on three 
base vector spaces. 
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FIGURE 4: Relationship among DSMs on DP, PC, and FS

Here, two mappings are denoted as Φ1ij: DP→PC 
andΦ2ij: PC→FS, which are two examples of DMMs to 
connect modularity matrices on diff erent base vector 
spaces (Danilovic and Browning, 2007; Lindemann et al., 
2009). 

For regular matrix Φ1ij such that dYi = Φ1ij→dXj, 

modularity matrices for functions on DP  and PC, 

denoted by Gdij and Gpij, are related as Gpij =

modularity matrices for functions on DP  and PC, 

Φ1ik→Gdkm→(Φ1)–1   mj. In addition, we note that a mod-

ularity matrix can be changed by constraints beyond a 

DMM, because constraints are generally diff erent on 

DP, PC, and FS.
Regarding the meaning of constraints C1i(X) in DP, 

C2i(Y) in PC, and C3i(Z) in FS, we can consider that 
C1i(X) represents the physical constraints for design, 
C2i(Y) represents the equipment constraints for com-
ponents, and C3i(Z) represents operation constraints in 
fi rms and markets (Fujimura, 2000). For example, one 
operational constraint is the cost of products. Generally, 
constraints become stronger in order when approaching 
the market such that there is {C1i(X)}⊃{C2i(Y)}⊃{C3i(Z)} 
as set inclusion. 

Finally, we prove equivalence between the modular-

ity matrices of DSM and AD. � e modularity matrix of 

AD is defi ned as a mapping

ity matrices of DSM and AD. � e modularity matrix of 

: FR→PC (Ulrich, 1995: 

Suh, 2001) such that

AD is defi ned as a mapping : FR→PC (Ulrich, 1995: 

. 

Since
 

, DSM on PC for functions 

is

 .        
Since Kfi j have only diagonal elements, in terms of 

modularity, DSM Gfi j on PC for functions is equivalent 
to the modularity matrix 

 Gfi j on PC for functions is equivalent 
of AD. Above, we should 

note that constraints are ignored and that DSM for 
both functions and constraints on PC may generally be 
diff erent from the modularity matrix 
both functions and constraints on PC may generally be 

of AD.

4. Modularization from
Statistical Mechanics

In this section, we introduce a regularization of 
modularity matrix and entropy from statistical mechan-
ics. From the entropy for modularity matrix, we derive 
modularizations of DSM and AD such as a real option 
theory and information axiom. Moreover, we propose a 
new principle of modularity from the principle of entro-
py maximization. 

From the defi nition of modularity matrix for func-
tions and constraints, when the initial values are far 
from the permissible ranges, a modularity matrix on the 
initial values does not satisfy both functions and con-
straints. � en, we must engage in trial and error to fi nd 
initial values satisfying the permissible ranges of both 
functions and constraints. We improve the defi nition of 
a modularity matrix to enable fi nding the permissible 
ranges of functions and constraints in order to realize 
the system although we cannot recognize the solu-
tions in advance or even if the initial values remain far 
from the permissible ranges. Concretely, we write Gfi j 
and Gcij by using step functions in order to make the 

permissible ranges explicit. When the parameters 

and Gcij by using step functions in order to make the 

 in 
Kfi j are between Ai and Bi, denoted as [Ai,Bi], by use of 

step functi ons 

Kfi j are between Ai and Bi, denoted as 

, Kfi j is more explicitly written as step functi ons , Kfi j is more explicitly written as 

 .         
We introduce a regularization of the modularity 

matrix by use of a new parameter T to modify the step 
functions such that 

.        
In Figure 5, we draw the probability for distribution 

functions to realize the system before and after regular-
ization when we set B = −A = 5 and T = 1.

FIGURE 5: Probability before and after the regularization

When T is large, fi nding the solutions from outside the 
permissible ranges is easier. � is new parameter T signifi es a 
capability to fi nd unknown solutions for product design and 
also a possibility to realize the small performance of product 
even outside permissible ranges. � is regularization is sim-
ilar to the fuzzy information axiom (Kulak and Kahraman, 

2005). Concretely, Kfij =  is regularized as Kfij (T) = 

 
such that 

      
for  

    .      

After regularization, the modularity matrices on DP for 
functions and constraints are defi ned by replacing Kfij and 
Kcij to Kfij(T) and Kcij(T), where Kcij(T) is similarly defi ned 
from Kcij. 

Next, we introduce entropy for the modularity matrix 
from statistical mechanics. � e regularized modularity ma-
trix for one function is 

  
    

for only one module. We note that the regularized modu-
larity matrix for one function is well-defi ned even when the 
permissible range of [A,B] is limited by a constraint as well as 
by a function. From a physics viewpoint, the matrix element 
of a regularized modularity matrix for only one module 
can be identifi ed as energy for a grand-canonical ensemble 
system of fermions. From statistical mechanics (Kubo, 1965), 
a partition function Z is defi ned as follows:  

       

for a grand-canonical ensemble of fermions. Also, entropy S 
is introduced as follows: 

  .  
 
In Figure 6, we plot the entropy for the interaction (B−A) 

for T = 1 and  = B/2 by simulation. While in physics, en-
tropy shows the number of states that can be realized in the 
system, in the fi eld of product design entropy represents the 
number of possible options in order to realize the system, 
which may be related to the real option theory (Baldwin 
and Clark, 2000). We conjecture the absolute value of this 
entropy to represent the value or performance of products to 
be maximized for product design. � e optimal design at the 
maximum point of entropy may be a concrete example of 
“dominant design” (Utterback, 1994). 

FIGURE 6: Entropy for interaction

We verify this conjecture through the modularizations 
of DSM and AD. We then study two diff erent limits of the 
entropy for B/T, smaller or larger, drawn as two circles in 
Figure 6. Here, we set A=−B for simplicity. As the fi rst limit 
of small B/T, where the constraint is strong, the entropy is 
expanded as 

.      
� erefore, for small B/T, the entropy is proportional to 

the size of interaction B. � is is logically the same as the 
modularization of DSM by real option theory (Baldwin and 
Clark, 2000) such that the size of interaction B is similar to 
the standard deviation  in real option theory. 

As the second limit of large B/T, where the constraint is 
weak, the entropy is approximated as follows.  

 ,      
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where can be interpreted as a probability by which the system satisfi es functions without constraints. � erefore, for 
large B/T, the entropy is approximated to a logarithm of the probability to realize the system. � is is logically the same as 
the modularization of AD by information axiom (Suh, 2001). Finally, regarding applicable cases of DSM and AD, DSM is 
applicable only to the cases of small B/T, where the constraint is strong, whereas AD is applicable only to the cases of large 
B/T, where the constraint is weak. 

Next, we study the cases of many modules with constraints. When the matrix elements of modularity matrix are res-
caled, the modularity matrix for functions is  caled, the modularity matrix for functions is  

,

where we choose for all k. Similarly, the modularity matrix for constraints isfor all k. Similarly, the modularity matrix for constraints is

, 

where we choose  for all k, and the parameters  are between Pk and Qk, denoted as [Pk,Qk]. By choice of a 
measure of delta function, the modularity matrix for both functions and constraints is measure of delta function, the modularity matrix for both functions and constraints is 

,   
where the intersections are defi ned as 

 

 .  
When we identify every matrix element in the modularity matrix as the energy for ground-canonical ensemble of fermi-

ons with the same energy 
When we identify every matrix element in the modularity matrix as the energy for ground-canonical ensemble of fermi-

 and the same temperature T, entropy for many modules with constraints is written as a sum of 
entropy, denoted as Sij for every matrix element. entropy, denoted as Sij for every matrix element. 

.   
� is entropy represents a value or performance of products with many modules. From the principle of entropy maximi-

zation, we propose a new principle of modularity. 
“� e Principle of Entropy Maximization” states that as approaching the optimal performance of a product, entropy 

increases.
We study cases of two modules in one system and can write the matrix elements of functions and constraints as We study cases of two modules in one system and can write the matrix elements of functions and constraints as 

 and 

We study cases of two modules in one system and can write the matrix elements of functions and constraints as 

, where we assume that ad − bc > 0, ps − qr > 0, a,b,c,d,p,q,r,s ≥ 0. 
When b = c = q = r = 0, the product design is called “modular.” When b ≠ 0 or q ≠ 0, the product design is called “integral.” 
When b = q = 0 and c ≠ 0 or r ≠ 0, the product design is called “hierarchical.” For two modules in one system, we write the 
entropy as entropy as 

,  

, ,
where is the sum of contributions from the off -diagonal matrix elements of the modularity matrix. Here, we study 

the contributions of constraints to change modularity. In the case that q ≠ 0, r = 0, and b = c = 0, where the product design is 
integral,  

 ,   

,

 .
In the case that r ≠ 0, q = 0, and b = c = 0, where the 

product design is hierarchical,  

,   

,

.
When the permissible ranges of functions are suitably 

large, modularity can change by the sizes of [P1,Q1] and 
[P2,Q2]. We then state the principle of modularity for the 
sizes of modularity matrix elements. If [Pi,Qi] ⊂ [Pi+1,Qi+1] 
for small ranges or [Pi+1,Qi+1] ⊂ [Pi,Qi] for large ranges, the 
product design can become hierarchical. If [Pi+1,Qi+1]⊂[Pi,-
Qi] for small ranges or [Pi,Qi]⊂ [Pi+1,Qi+1] for large ranges, 
the product design can become integral. If the sizes of [Pi,Qi] 
and [Pi+1,Qi+1] are similar, the product design can become 
modular. � erefore, we fi nd that the principle of entropy 
maximization defi nes modularity, which we call the princi-
ple of modularity. � is principle seems similar to the GA-
based clustering for weighted DSM by use of the information 
theoretic method (Yu et al. 2007), which does not include 
constraints explicitly.

We draw the entropy for two modules with constraints 
in Figure 7 when we set  = T = 1 and P1 = −Q1 = P2/2 = 
−Q2/2, where the sizes of constraints increase in order. In 
Figure 7, the blue line with circles is in the modular case q = 
r = 0 ; the red line with squares is in the integral case q/p = 
1/2 ; and the green line with triangles is in the hierarchical 
case r/s = 1/2. In Figure 7, we see that the value of a product 
is higher when the product design is hierarchical, in a nar-
row range of constraints, or more integral in a wide range of 
constraints. � us, constraints can change the modularity to 
increase the value of a product. 

FIGURE 7: Entropy in modular, integral, and hierarchical cases

Finally, about the number of modules in one system, we 
study cases that the number of modules can be optimized in 
a fi nite number to maximize the value of product. We con-
sider simple cases to add sets of two modules in one system 

with integration “ci” as 

, where c/d = 1/2,  = 7, T = 1, Bn = −An = nB1, and B1 = 
1, and the other off -diagonal matrix elements of modularity 
matrix for functions are zero when the constraints are weak 
and modular. In Figure 8, we plot entropy for the number of 
modules and can see an optimized number of modules in 
one system. When the number of modules increases beyond 
the optimized number, it becomes diffi  cult to realize the 
system without much cost.  

FIGURE 8: Optimized number of modules

 

5. Conclusions
We have demonstrated the equivalence of DSM on PC 

for functions and AD for modularity matrices and modular-
ization. We have proposed a relationship among three mod-
ularity matrices on DP, PC, and FS not only by DMM and 
MDM but also by showing the diff erences of constraints. We 
have regularized a modularity matrix by the new parameter 
T and have used statistical mechanics to construct entropy 
for fermions. In addition, we proposed a new principle of 
modularity from the principle of entropy maximization, 
which determines how modularity should change in order to 
realize the highest value of products. 

Future scholarship might consider applying our theory 
to the assembly and process industry. Although our model 
addresses the regularizations of a modularity matrix by sta-
tistical mechanics for fermions, we anticipate that a similar 
approach of physics will also be useful for studying the 
optimal designs of products.
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