KEYWORDS 8 project data edynamic scheduling @Monte Carlo simulation &baseline scheduling
e schedule risk analysis ®project control

AN OVERVIEW OF

PRQLECLDATA

—O

= IN

—GR

=D PROJEC

MANAG EM ENT

AND CONTROL

Mario Vanhoucke ' >3
mario.vanhoucke@ugent.be

José Coelho +5

jose.coelho@uab.pt

Jordy Batselier'

"Faculty of Economics
and Business
Administration, Belgium

*Technology and Operations
Management Area, Belgium

3UCL School of
Management, University
College London,

United Kingdom

4Universidade
Aberta, Portugal

5INESC - Technology
and Science, Portugal

8@ ABSTRACT

In this paper, an overview is given of the project data instances available in the litera-
ture to carry out academic research in the field of integrated project management and
control. This research field aims at integrating static planning methods and risk analyses
with dynamic project control methodologies using the state-of-the-art knowledge from
literature and the best practices from the professional project management discipline.
Various subtopics of this challenging discipline have been investigated from different
angles, each time using project data available in literature, obtained from project data
generators or based on a sample of empirical case studies. This paper gives an overall
overview of the wide variety of project data that are available and are used in various re-
search publications. It will be shown how the combination of artificial data and empirical
data leads to improved knowledge on and deeper insights into the structure and charac-
teristics of projects useful for academic research and professional use. While the artificial
data can be best used to test novel ideas under a strict design in a controlled academic
environment, empirical data can serve as the necessary validation step to translate the
academic research results into practical ideas, aiming at narrowing the bridge between
the theoretical knowledge and practical relevance. A summary of the available project
data discussed in this paper can be downloaded from http://www.projectmanagement.

ugent.be/research/data.

1. Introduction

In this paper, an overview is given of the data used to
test research hypotheses on integrated project management
and control. The discipline is also referred to as dynamic
scheduling (Uyttewaal, 2005; Vanhoucke, 2012) and refers
to the integration of three components of managing and
controlling projects, known as baseline scheduling, schedule
risk analysis and project control (Vanhoucke, 2014).

Each of the three disciplines has received attention from
various areas of the academic community, which has result-
ed in a (huge) amount of published studies. In this paper, the
focus is restricted to the development of quantitative opti-
mization and simulation models for the three disciplines,
for which a brief summary is given along the following lines.
Firstly, the research on the construction of a project baseline
schedule dates back to the ‘50s with the development of two
methods, now known as the Program Evaluation and Review
Technique (PERT) and the Critical Path Method (CPM).
Years later came the extension concerning the incorpo-
ration of renewable resources with a limited availability.
Due to the huge amount of research papers that have been
written on this challenging topic, it is almost impossible
to give the most important references. Research overviews
have appeared in literature and research handbooks have
been published. A recent survey of various variants for
resource-constrained project scheduling problem is given
in Hartmann and Briskorn (2010) and a student handbook
has been published by Vanhoucke (2012). Secondly, the basic
principle and underlying methodology used for schedule risk
analysis is given by Hulett (1996) and an overview of Sched-
ule Risk Analysis (SRA) is provided by Williams (1995). The
technique has recently been used in various studies, such as
Vanhoucke (2010c) and Elshaer (2013). Finally, the research
on project control to monitor the performance of projects
in progress has received an increasing attention in the past
decade, and has resulted in a classification of the project
control literature written by Willems and Vanhoucke (2015)
and a review of analytical models and decision support tools
in project control by Hazir (2015). The research on these
three dimensions all make use of data, sometimes restricted
to simple artificial examples, but often based on a wide set
of generated data, or even a (small) set of empirical project
data.

In this paper, an overview will be given of the availabil-
ity and lack of project data for each of the three disciplines
mentioned earlier. A distinction will be made between
artificial datasets in literature and empirical databases with
data from real projects. When a lot of data are available, as is
the case for the baseline scheduling discipline, an overview

will be given to bring structure and provide clarity for future
researchers. For the disciplines that fall short regarding the
availability of artificial or empirical data, references are giv-
en to the limited sets that are available and suggestions are
formulated to extend the size of the available data.

The outline of this paper is as follows. Section 2 gives a
brief introduction of the data types and sources, and why
and how the careful selection of project data is important for
researchers and professionals active in the field of integrated
project management and control. This section is followed
by two main sections for two classes of data. Section 3 then
gives an overview of the main efforts done to generate and
collect artificial data for the three disciplines mentioned
earlier, and includes references to network generators, da-
tasets available in the literature as well as efforts to classify
the data in predefined classes. Section 4 provides a summary
of an empirical dataset of projects and the classification
scheme used to validate the quality of real data. Finally, sec-
tion 5 draws overall conclusions and highlights important
avenues for future research. An appendix has been added
that gives a short overview of the references to the formulas
used to generate data.

2. Project data

Since the recent explosion of digital data, (project) man-
agers can measure and know significantly more about their
business, and directly translate that knowledge on project
performance into improved decision making. The big data
hype requires that data are readily available to everyone,
allowing a careful and intensive analysis to better measure
project progress and therefore allowing to manage the per-
formance of projects more precisely than ever before. This
analysis requires data-intensive analytical techniques and
methodologies from operations research, computer science
and artificial intelligence that add an intelligence layer to
big data to tackle complex analytical calculations much
faster than ever before. The development of new and testing
of existing analytical methodologies are often in the hands
of academics studying the three disciplines separately, or
aiming at presenting an integrated approach. Such studies
require the presence of project data, in huge numbers, to test
novel data-intensive ideas on scheduling, risk and control.

The reality is that these project data are often not availa-
ble in these huge numbers, or - when available - clearly lack
the required structure for research. Researchers often must
fall back on their own data that differ from study to study,
with an unknown source and with little to no relevance for
sharing with others. To overcome these problems, many
efforts have been made in the past decades to present sets
of structured and well-designed data that can be shared and
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used among researchers for comparing and benchmarking
new ideas. The focus of the following sections lies on giving
an overview of the design of the existing datasets and on de-
scribing how they have been collected or generated, aiming
at providing a clear overview of the various sets currently
available.

Since the specific needs and details for data might differ
between academic researchers and professionals, the next
sections elaborate on the various sources of project data in
literature (section 2.1) and on the difference between static
and dynamic data (section 2.2) for integrated project man-
agement and control.

2.1 Data source

The data source in academic literature can consist
of notional data, artificial data generated according to a
well-defined process, or carefully collected empirical project
data. While notional data only serve illustrative purposes,
the difference between artificial data and empirical data is
often more important, as they can be used to serve different,
sometimes complementary needs.

© Notional data: Notional data consist of one or a few example
projects used to illustrate calculations and to present
the general relevance of the research idea under study.
Asingle example is often constructed in such a way that
it ideally shows the contribution of the newly presented
method, and therefore, it often lacks any structure or value
to claim the generalization of the research results.

© Artificial data: The major aim of academic research is to develop
new methodologies and test their performance on a wide
range of problem instances in search for drivers of good or bad
performance. Rather than presenting a methodology that can
solve the problem under study, the contribution of the research
often lies in showing why the new methodology performs well in
some cases, but fails to compete with alternative methodologies
in other cases. This search for drivers that determine the
performance of the new methodologies is crucial for academic
research and provides insights into the characteristics of the
newly presented ideas to stimulate further developments and
fine-tuning in future research. As an example, in the study
of Vanhoucke (2010a), it has been shown that the Earned
Schedule (ES) method - at that time a novel extension of the
traditional Earned Value Management method (EVM, Fleming
and Koppelman (2010)) to measure the time performance of
projects - worked well for projects with a rather serial structure,
but could not be used for projects with a more parallel
structure. The insight has led to follow-up papers by other
researchers to develop good alternatives for parallel-structured
networks, such as the method presented by Elshaer (2013).

© Empirical data: The major reason why empirical data must be
used in research is to validate academic results for practical
use, showing the relevance in a real-life setting that often
differs slightly or dramatically from the well-designed artificial
data. As a professional, the availability of data allows testing
ideas on company-specific data to fine-tune existing or new
methodologies to the unique and specific aspects and settings of
the company culture, personal wishes and particular needs of the
project manager. Rather than providing insights into drivers for
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good or bad performance of the newly presented methodologies,
the focus often lies on adapting and modifying the methodology
in order to optimize its performance for a specific setting.

Due to the different purposes of the two last data types,
it is crucial for researchers to take a well-considered and
balanced view on the use of theoretical artificial project data
and empirical real project data in their research endeavours.
It is the personal belief of the authors that the first and main
focus of academic research should lie on using artificial
project data based on a controlled and full-factorial design.
In doing so, the researchers have full control over all the
project parameters in order to obtain and present general
results that are applicable for a wide variety of projects. It
allows them to show why their methodologies work and fail,
and it enables them to identify future research avenues. Only
afterwards, these general results can be translated into prac-
tical guidelines and rules of thumb that differ from project
to project, company to company and sector to sector. Empir-
ical data serve very well for that purpose, and the resulting
case study research should be used as a tool for validation
of academic results and for tightening the gap between the
academic endeavours and practical relevance, rather than
for presenting generalized results. Nevertheless, empirical
studies can certainly provide an impetus for new academic
research. After performing both the general academic study
and the empirical validation study, consultants can take over
and extend the interesting ideas to sector-specific tools and
methodologies, which should be - although very relevant -
kept outside the academic environment.

2.2 Data type

The integrated project management and control meth-
odology requires planning methods to schedule project
networks prior to the execution of the projects, as well as
project control methods to dynamically monitor the perfor-
mance of projects in progress. Therefore, the required data
needed to test new methodologies should be split in both
static and dynamic data. This distinction is shown in Figure
1, which displays the project life cycle and the three compo-
nents of integrated project management and control.

Static project data refer to all data necessary to model all
processes carried out prior to the project execution. Ob-
viously, planning and scheduling project activities with or
without the presence of limited renewable resources belong
to this class of processes and require data for project activi-
ties, precedence relations and the activity network, including
estimates for time and costs of activities and their need for
renewable resources.

Dynamic project data refer to all types of data required
to model the progress of the project. The project control
phase requires tracking data to measure the progress of
the project at periodic time periods. These data should be
collected at periodic intervals during project progress to
measure the performance of projects and to enable the pro-
ject manager to forecast the final project duration and costs
as well as to take actions when the project runs into trouble.

While the distinction between static and dynamic data
for the baseline scheduling and project control phases is
straightforward and unambiguous, the third component,
known as schedule risk analysis, can be considered as both
static and dynamic. This component clearly satisfies the
condition of static data, since the analysis of the risk of a
schedule is done based on Monte Carlo simulations prior
to the start of the project and serves as input for the control
phase. However, these Monte Carlo simulations require data
that is used to reflect and imitate project progress, and can
therefore also be considered as dynamic.

Since the required data for these simulations is similar
to the data for the project control phase, this phase will be
classified as dynamic, and its specific data requirements will
be described in section 3.2.

J. Artificial data

It has been mentioned earlier that one of the main advan-
tages of creating artificial data is that researchers have full
control over the parameters during the generation process.
Through the use of a careful design, a dataset can be con-
structed that incorporates a wide and diverse set of different
project parameters to assure that new methodologies can be
tested for various project settings. Ever since the publication
of Elmaghraby and Herroelen (1980), who draw attention
to the need for project datasets that span the full range of
problem complexity, network and resource parameters have
been proposed to describe the characteristics of projects and
generators have been developed to generate artificial static
data with these parameters. These parameters and genera-
tors, as well as the best-known datasets, are described in sec-
tion 3.1. Generating dynamic data has been less controlled
and formalized, since the imitation of real project progress
heavily depends on assumptions made about the uncertainty
and unexpected events that pop up during progress. Never-
theless, recommendations on the use of statistical distribu-
tions have been formulated in literature and are the topic of
section 3.2.

3.1 Static project data

This section reviews the static project data parameters
that are used by artificial project data generators to obtain
data on project networks and project resources. These data
generators have been used in literature to generate bench-
mark sets that are now commonly used and shared between
researchers to compare and benchmark results of their
studies.

3.1 Data parameters

Network topology: A first class of static parameters is
used to describe the network topology of the project. The
topological structure is defined by the specific assembly of
project activities and precedence relations between these
activities, and can lead to various structures. This search to

model and measure the structure of a project network has
resulted in various network parameters for which a non-ex-
haustive overview is given along the following lines.

A first and simple parameter to measure the network
topology is known as the Coefficient of Network Complexity
(CNC), originally defined by Pascoe (1966) as the number
of arcs over the number of nodes for activity-on-the-arc’
networks and later redefined by Davies (1974) and Kaimann
(1974, 1975). The measure has been adapted for activi-
ty-on-the-node problems by Davis (1975) as the number of
direct arcs over the number of activities (nodes) and has
been used in the network generator ProGen (Kolisch et al.,
1995). Some researchers have shown that the CNC fails to
discriminate between easy and hard project networks and
can therefore not serve as a good parameter for describing
the impact of the network topology on the hardness of a
project scheduling problem.

A second well-known parameter of the topological struc-
ture for activity-on-the-node networks is the Order Strength
(OS) (Mastor, 1970), defined as the number of precedence
relations (including the transitive* ones) divided by the the-
oretical maximum number of precedence relations M
, where 1 denotes the number of activities in the netwdrk. It
is sometimes referred to as the density (Kao and Queyranne,
1982) or the restrictiveness (Thesen, 1977) and equals 1
minus the flexibility ratio (Dar-El, 1973). Herroelen and De
Reyck (1999) conclude that the OS, the density, the restric-
tiveness and the flexibility ratio constitute one and the same
complexity measure. Schwindt (1995) and Demeulemeester
et al. (2003) have used this parameter in the problem genera-
tors ProGen/Max and RanGenl, respectively.

Tavares et al. (1999, 2002) have presented several other
parameters of network topology, which have been further
developed by Vanhoucke et al. (2008) and implemented
in the RanGen?2 network generator. The first parameter
11 simply reflects the number of nondummy activities in

1 Inan activity-on-the-arc network, each arc represents a project activity

and each node is used to denote a project event. This format is less used in
integrated project management and control research, and hence, network
topology parameters for this format are not discussed in this paper. In this paper,
only network topology parameters for the activity-on-the-node networks will be
discussed.

2 When two direct or immediate precedence relations exist between activities
(i, j) and activities (j, k), then there is also an implicit transitive relation between
activities (i, k).

Project life cycle

Preparation phase

Concept H Schedulung '4_h'°'“"°“""""db“kbop
(R'SkAnaiys'sH Control H Termmauon)

Project progress phase : Evakation phase

Static Dynamic
(prior 10 project execution) (during project execution)

FIGURE 1. The project life cycle with static and dynamic project phases
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the project. The other five parameters have originally been
referred to as the 12 to 16 parameters and have been rescaled
to lie between 0 and 1, inclusive, denoting the two extreme
structures. Four of these parameters have been renamed to
SP, AD, LA or TF (see further for definitions) to make them
more intuitive and have been used for the generation of
4,100 instances used in a project control study of Vanhoucke
(2010a).

The first 12 parameter has been renamed to the Serial/
Parallel (SP) parameter and measures the closeness of a
network to a serial or parallel network. When SP = 0 then all
activities are in parallel, and when SP = 1 then the project
network is completely serial. Between these two extreme
values, networks can be generated closer to either a serial or
a parallel network. The SP parameter determines the num-
ber of serial activities in the network on the longest chain
and can be considered as an easy-to-understand alternative
for the OS.

The second I3 parameter, renamed to the Activity Distri-
bution (AD), measures how the project activities that do not
belong to the longest chain are distributed in the network.
When the longest chain defined by the SP parameter is con-
sidered as a number of serial activities that defines a number
of levels in the project network, the AD parameter measures
the width of each level along this longest chain. When AD =
0, all levels contain a similar number of activities, and hence,
the number of activities is uniformly distributed over all lev-
els. When AD = 1, there is one level with a maximal number
of activities, and all other levels contain a single activity.

The third parameter, Length of Arcs (LA), measures the
length of each precedence relation (i, j) in the network as
the difference between the level of the end activity j and the
level of the start activity i. When LA equals 0, the network
has many precedence relations between two activities on
levels far from each other. Hence, the activity can be shifted
further in the network. When LA equals 1, many precedence
relations have a length of one, resulting in activities with
immediate successors on the next level of the network, and
thus little freedom to shift. This parameter is an alternative
for the two parameters 14 (length of short arcs) and 15 (length
of long arcs) of Vanhoucke et al. (2008), which both measure
the length of arcs in two different ways. To avoid confusion
and overcome this close relation, LA is used and is equal to
the 14 parameter, while the I5 parameter is no longer used.

The last parameter is the Topological Float (TF) that
measures the topological float of a precedence relation as the
number of levels each activity can shift without violating the
maximal level of the network (as defined by SP ). Hence, TF
= 0 when the network structure is 100% dense and no activi-
ties can be shifted within its structure with a given SP value.
A network with TF = 1 is a network with a chain of activities
defined by the value of the SP parameter (these activities
obviously have no topological float), while the remaining
activities have a maximal topological float value.

Resource parameters: A second class of static parameters
is used to describe the resource parameters of the projects.
Modelling the demand for resources by activities as well as
the limited availability of the project resources has resulted
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in various resource parameters to model Resource-Con-
strained Project Scheduling Problems (RCPSPs). These
parameters have been used to model and generate both
renewable and nonrenewable resources. Renewable resourc-
es are available on a period-by-period basis, i.e. the available
amount is renewed from period to period. Only the total
resource use at every time instant is constrained. Typical ex-
amples are manpower, machines, tools, equipment or space,
and this resource type is used in all RCPSP formulations
discussed in section 3.1.3. Nonrenewable resources (often
referred to as consumable resources) are available on a total
project basis, with a limited consumption availability for the
entire project. Typical examples are money, raw materials or
energy. This resource type is less used in the academic liter-
ature and is only defined for one class of RCPSPs of section
3.1.3.

In order to describe and measure the relation between
activities and resources, the number of renewable and
nonrenewable resources must be specified, and it is common
practice in the academic literature to set them to maximum
four resource types, for both renewable and nonrenewable
resources. Given the number of resource types available to
execute the project, the resource requirements by project
activities as well as the limited availability of the resources
can be measured by various parameters.

The density of the resource requirements is used to
describe whether an activity makes use of a particular re-
source or not, and is measured by the Resource Factor (RF)
(Pascoe, 1966) or the Resource Use (RU) (Demeulemeester
et al., 2003). The RF simply calculates the average portion of
resource types requested per activity, but the use of this re-
source parameter has been criticized in literature. Using the
RF for generating project data is not always easy, since it is
possible that no resource requirement will be generated for
some activities while others use all the resources. Therefore,
the RU has been proposed as an alternative and simply var-
ies between zero and the number of resource types available
and measures for each activity the number of resource types
needed for its execution.

The connection between the resource requirements and
the limited resource availability has resulted in parame-
ters such as the Resource Strength (RS) (Cooper, 1976) and
Resource Constrainedness (RC) (Patterson, 1976). The RC is
defined as the average resource requirement for all activities
for a particular resource divided by the availability of that
resource, and is therefore a simple and easy-to-understand
measure to know how scarce the resource is. The RS is -
although widely used in the academic literature - not so easy
to understand and subject to debate among researchers. Its
formula takes both the resource requirements of the project
activities as well as the network structure into account, and
is therefore criticized by De Reyck and Herroelen (1996)
for being no pure resource parameter. Details are outside
the scope of the current paper, and the reader is referred to
Demeulemeester et al. (2003) for more information on the
specific formulas and a detailed discussion on the advantag-
es and disadvantages of this parameter.

The previous resource parameters have all been defined
for renewable resources only. However, when project activi-
ties have multiple choices for activity durations and resource
requirements (this is referred to as the multi-mode case in
section 3.1.3), both renewable and nonrenewable resources
are used in the project data, and the RS must then be defined
for both resource types. The RS for renewable resources
with multiple activity modes has been defined by Kolisch et
al. (1995) as a straightforward extension for the RS formula
for single-mode activities, but Demeulemeester et al. (2003)
criticize this redefinition and propose some adaptations
since otherwise its use for project data generation can result
in infeasible (i.e. unsolvable) activity/resource combinations.
Furthermore, the RS for nonrenewable resources has been
defined by Van Peteghem and Vanhoucke (2014) and is very
similar to the RS for renewable resources. In order to bring
structure to the different definitions of the previously dis-
cussed network topology and resource parameters, Table 3 in
appendix A is created to provide a summary and references
to the exact formulas for both the network topology and
resource parameters.

3.1.2 Data generators

Many of the network and resource parameters have been
used to create project generators that automatically gen-
erate artificial static data using a range of values for these
parameters. To the best of our knowledge, only one network
generator is known to be strongly random (Demeulemeester
et al., 1993), which is a feature that expresses that the
networks can be generated at random from the space of all
feasible networks with a specified number of nodes and arcs.
This feature is important to guarantee that all networks that
can exist in practice can theoretically be generated by the
network generator. Unfortunately, the generator makes use
of the activity-on-the-arc format, which is less popular than
its activity-on-the-node alternative format, and no other
characteristics can be specified for describing the network
topology. Therefore, this generator is not further discussed
in this paper. All other data generators discussed in this sec-
tion aim at generating activity-on-the-node project networks
under a controlled design by predefining the topological
structure of the network as discussed in section 3.1.1. These
data generators have been used in research on the RCPSP
(see section 3.1.3) and therefore also take the previously
discussed network topology and resource parameters into
account. An overview is given along the following lines.

ProGen is the network generator developed by Kolisch
et al. (1995) and takes the CNC into account to measure the
network topology as well as resource-related characteristics
RF and RS. Schwindt (1995) extended ProGen to ProGen/
Max, which can handle three different types of RCPSPs
with minimal and maximal time lags, and relies on the OS
instead of the CNC to measure network topology. Drexl et
al. (2000) presented a project network generator ProGen/
nix based on the project generator ProGen, incorporating
numerous extensions of the classical RCPSP. Tavares (1999)
has presented a new generator RiskNet based on the concept
of the progressive level by using six topological parameters,

referred to as I1 to 16 in section 3.1.1. Demeulemeester et

al. (2003) have developed an activity-on-the-node network
generator RanGen, which is able to generate a large amount
of networks with a given value for the OS. Due to an effi-
cient recursive search algorithm, RanGen is able to generate
project networks with exact predefined values for different
topological structure measures. Finally, Vanhoucke et al.
(2008) have adapted RanGen to an alternative RanGen2
network generator taking the I1 to I6 into account (with later
some of them redefined to SP, AD, LA and TF). Both RanGen
generators also consider all the resource parameters RS, RU,
RF and RC.

All previously mentioned network generators have been
primarily built for generating networks for individual pro-
jects, but the generation of multiple project networks can be
easily done to test planning, scheduling and control meth-
odologies in a multi-project setting. However, the simple
generation of multiple projects by the previously mentioned
generators will ignore some specific settings of project port-
folios that are not incorporated in the current single project
data generators. To the best of our knowledge, there is only
one multi-project network generator available in literature
developed by Browning and Yassine (2010) that fully exploits
the specific characteristics of the interaction between single
projects by adding project portfolio parameters.

3.1.3 Datasets

The generators mentioned in the previous section have
been used in various research studies to generate data for
the specific research question of the study. However, some
researchers have shared their data online, in order to enable
other researchers to compare their results with previously
obtained research results. Obviously, sharing project data
with other researchers only makes sense when the data are
used to study a well-known and widely investigated problem,
in order to stimulate fair comparisons and evaluations of
new research results with the state-of-the-art results that
are currently available. The majority of data available for
research focuses on the construction of a baseline schedule,
and much less data are available for the schedule risk analy-
sis and project control phases of dynamic scheduling. More
precisely, data for constructing baseline scheduling focus on
RCPSPs, in which the project activities have to be scheduled
within the limited availability of resources. The generation
of these datasets relies on both the network topology and
the resource parameters described in section 3.1.1. Since
the RCPSP is a problem that can be investigated under
various extensions (see e.g. Hartmann and Briskorn (2010)),
it is impossible and outside the scope of this paper to give a
full overview of all available datasets in literature for all the
possible extensions of the RCPSP. Therefore, a choice has
been made to restrict the description to the RCPSP and two
widely investigated extensions; one that incorporates activity
cash flows and another that incorporates multiple modes
for the project activities. Only one set is discussed regarding
static project data used for schedule risk analysis and project
control. This set only incorporates network topology param-
eters since no resources are taken into account. Obviously,
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since this set contains project networks used for research
on the dynamic phases of dynamic scheduling (see Figure 1),
these static project data should be extended with dynamic
project data discussed in section 3.2. The description of the
four classes of datasets is given along the following lines.

© RCPSP: The research on the well-known RCPSP aims at

scheduling project activities within the limited availability of
renewable resources so that the total project duration - often
referred to as the project makespan - is minimized. Various
exact algorithms have been developed to solve the problem to
optimality, just like heuristic and meta-heuristic procedures

to solve the problem to near optimality, and have resulted in a
very competitive environment where new results are compared
against other published results. The first dataset that has been
used to test the ideas was the well-known Patterson set that is

a collection of notional project examples from various papers

in literature resulting in 110 unstructured projects. This set

has long been the primary source for testing new procedures,
until it was replaced by a bigger structured dataset once all 110
problems could easily be solved. This alternative set is known as
the PSPLIB dataset (Kolisch and Sprecher, 1996) and is still used
to benchmark new research results. Together with the new set,
the authors proposed some criteria to set up a fair evaluation
between different procedures, such as using a stop criterion

of 5,000 schedules when population-based metaheuristics are
used. All data have been generated by the ProGen generator, and
researchers are stimulated to download the benchmark sets to
evaluate their algorithms and to send their results to be added to
the library. Up to today - almost 20 years after the introduction of
four sets containing 30, 60, 90 and 120 activities for the projects
- not all solutions currently found could be confirmed to be the
optimal ones, despite the rapid increase of computer speed

over the years, which makes the dataset still highly relevant

for research purposes. An alternative set known as RG300
generated by RanGen has been proposed (Debels and Vanhoucke,
2007) and is available to researchers. This set contains projects
with 300 activities and has been generated under a diverse
structure of the network topology (using the OS) and resource
scarceness (using the RC). Finally, a set known as RG30 (with

30 activities per project) has been constructed to compare the
relation between the different network topology parameters
and to show that some of the existing sets fall short on network
topology diversity, as discussed in Vanhoucke et al. (2008).

MMRCPSP: One of the best-known extensions of the traditional
RCPSP concerns the inclusion of multiple modes for each project
activity. This so-called Multi-Mode Resource-Constrained Project
Scheduling Problem (MMRCPSP) assumes that each project
activity can be executed in one of a set of predefined time/
resource combinations (modes) where lower activity durations
are linked to a higher renewable resource demand. A dataset
containing projects with 50 and 100 activities has been put
available by Boctor (1993), but the main dominant set has been
the PSPLIB, since the library does not only offer single mode
project data instances but also provides multi-mode instances
under a controlled design. Due to the inherent complexity of
the problem, the dataset is restricted to projects with 10 to
maximum 30 activities. However, Van Peteghem and Vanhoucke
(2014) have shown that the multi-mode set of PSPLIB falls short
on some criteria and have presented three alternative sets. The
main reasons are the limited range of the PSPLIB instances,
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both in terms of project structure as in number of modes per
project activity. Moreover, not all instances of the PSPLIB can

be solved as they contain infeasible mode combinations, while
the three newly presented sets, known as MMLIB50, MMLIB100
and MMLIB+ are all feasible and a good algorithm should be able
to find a near optimal or optimal solution for each instance.

RCPSPDC: While the RCPSP and its extension to MMRCPSP
aims at minimizing the project makespan (i.e. the total
project duration), the extension to the well-known Resource-
Constrained Project Scheduling Problem with Discounted
Cash flows (RCP-SPDC) assumes costs for each activity and
aims at maximizing the net present value of the project.
Although much less investigated than the RCPSP, many
research papers have been written on the problem, presenting
exact and heuristic procedures for different payment models.
Two datasets have been made available for this problem
type, one with projects of 10, 20, 30, 40 and 50 activities (set
DC1) that has been used to solve the problems to optimality
(vanhoucke et al., 2001) and a second one with 25, 50, 75

and 100 activities per project (set DC2) that has been used

to solve the problem heuristically (vanhoucke, 2010b).

EVM/SRA: The previous datasets make use of both network
topology and resource scarceness parameters, since they are
mainly used for the development of various RCPSP algorithms.
However, research on schedule risk analysis and project
control seldom makes use of resource constraints, and the
construction of a baseline schedule is often nothing more
than an earliest start schedule using critical path calculations.
Therefore, the construction of the static data consists of the
generation of project networks with a controlled topological
structure, but without the use of resource parameters. The
4,100 data instances of the dataset generated by Vanhoucke
(2010a) (set MT) is the most complete set in terms of network
topology, and has been generated by varying the SP parameter
by nine settings (Set 1), and the AD, LA and TF parameters

by four settings (Set 2 to 4, respectively). This has resulted

in 900, 800, 1,200 and 1,200 instances, respectively, leading

0 4,100 instances in total. Obviously, these static network
data are then used in dynamic project control studies,

using dynamic project data as discussed in section 3.2.

Summary table and critical remarks: Table 1 gives an
overview of the four classes of datasets. The table shows the
values for the network topology and resource parameters
for renewable and nonrenewable resources, and where
applicable the number of modes for the MMRCPSP. The
values used for generating the data are classified into

three categories, displayed in the following format:

© Class1(red cells). The values for the parameters that were
set by the user as input values prior to the generation
of the data are shown in the table and separated by
a semi-colon in case multiple values are used.

© Class 2 (green cells). The values for the parameters that have
not been set by the user have been calculated afterwards
using the definitions discussed in section 3.1and shown in
Table 3. For these parameters, the minimum and maximum
values are calculated and displayed between brackets.

© Class 3 (orange cells). A third class of values for the
parameters is similar to class 1 (predefined by the user),

but consists of values for which our calculations differ
from the input values reported in the paper where the
dataset has been proposed. These values are formatted
as the values of class 2 (minimum and maximum
value), but in an italic font to denote that the values
should normally belong to class 1 (predefined by the
user) but differ from the original paper values. These
changes are summarized along the following lines.

The CNC values are set to 1.50, 1.80 and 2.10 for the J30,
)60, )90 and J120 instances of the single-mode PSPLIB,

and to 1.50 (J10) and 1.80 (J12 to J30) for the multi-mode
PSPLIB. However, the CNC calculations of the generator
ProGen take dummy start and end activities into account,
as well as the arcs that are connected to these dummy
activities. In another paper by Vanhoucke et al. (2008), the
CNCvalue is calculated as the number of direct arcs over
the number of nodes, excluding all dummy activities and
arcs connected to these dummies. Since this last definition
is in line with the definition of the OS, that also excludes
the presence of dummies, we have chosen to calculate
CNC values according to this last definition (see Table 3),
and hence, the values differ slightly from the originally
reported values.

Some of the instances of the multi-mode PSPLIB could never
result in a feasible project schedule and have therefore been
removed from the initial set. The two reasons for these infea-
sibilities are as follows:

1. The number of generated instances for each set (J10 to
J30) was set to 640. However, some of these generated
instances have a total minimum nonrenewable resource
demand (requested by all the activities) that exceeds the
nonrenewable availability, and therefore, constructing a
feasible project schedule is impossible. Removing these
instances from the initial set has reduced the number of
instances to on average 549 instances per set instead of
the reported 640, which corresponds to what has been
reported by Van Peteghem and Vanhoucke (2014).

2. The number of modes for each activity has been set to
exactly 3, but some of the activities have modes for which
the renewable resource demand exceeds the resource
availability. These modes have been removed from the
set, which has resulted in an average number of modes
lower than 3.

The definitions of the RS, both for single-mode instances
(renewable resources) and multi-mode instances (renewable
and nonrenewable resources) differ among different sources
in literature, and therefore, the following choices have been
made:

The definition of the RS for the renewable resources for the
single-mode PSPLIB, DC1 and MMLIB+ is the same as the
definition used in literature, but a small adaptation has been
made that results in some minor changes for the input values
of these sets. More precisely, the definition of the RS has been
extended with an extra condition that sets the RS value equal
to 1in extreme cases. The new formula is given in Table 3.

The definition of the RS for the renewable and nonrenewable
resources for the multi-mode PSPLIB differs from the original
definitions used by Kolisch et al. (1995) to avoid infeasible (i.e.
unsolvable) activity/resource combinations, as mentioned
earlier in section 3.1.1. More precisely, the definition of the

RS for renewable resources is defined in Demeulemeester et
al. (2003), while the definition for the RS of nonrenewable

resources is taken from Van Peteghem and Vanhoucke (2014).
Both definitions result in values for the RS parameter that
differ from the originally reported values in the paper of the
multi-mode PSPLIB instances.

3. Thevalues for the OS for the DC1 set are not completely
identical to the input values of the user since the ProGen/Max

generator is not always able to generate project instances with
the exact predefined OS values. Therefore, the values slightly
differ from the values reported in the original paper.

The previous discussion clearly illustrates the impor-
tance of structuring the vast amount of data used in the
project management and scheduling literature. Because of
the multiple and sometimes confusing definitions of some of
the parameters previously discussed, Table 3 gives an over-
view of all definitions used. Table 1is a summary of all the
calculations, and the complete MS Excel file with all values
for each individual instance as well as the datasets them-
selves can be downloaded from www.projectmanagement.
ugent.be/research/data.

3.2 Dynamic project data

Dynamic project data are used to imitate project pro-
gress, in which deviations from the initial time and cost
estimates for the activities result in projects finishing earlier
than expected or with a certain delay, and with cost over-
runs or underruns. Unlike the static network and resource
parameters that are used to generate static data under a wide
range of various settings, the choice of generating dynam-
ic data is more cumbersome as they should ideally reflect
real-life scenarios. However, the real execution of projects
is flavoured with unknown events and unexpected schedule
deviations that cannot easily be captured by simple data
parameters. Using unrealistic assumptions on real project
costs or activity delays undoubtedly degrades the quality of
the obtained research results, and hence, the credibility of
their use for practical purposes. Therefore, project progress
should be imitated in an experimental environment using
statistical distributions that reflect the characteristics of real
project progress. While the value of Monte Carlo simula-
tions to imitate project progress has long been established
(Schonberger, 1981; Ragsdale, 1989; Williams, 1995; Kwak
and Ingall, 2007), the choice of the right distribution to
model activity duration uncertainty has been subject to a de-
bate among researchers. Since the development of PERT, the
beta distribution was assumed to be the best distribution to
accurately represent the uncertainty present in the duration
of activities of real-life projects. However, throughout the
years, different authors have suggested alternatives, such as
Kuhl et al. (2007) who proposed the use of the generalized
beta distribution (Which has been used in the project control
studies of Vanhoucke (2010c, 2011)), but also the lognormal
distribution (Mohan et al., 2007), a mixture of beta and uni-
form distributions (Hahn, 2008) and the doubly truncated
normal distribution (Kotiah and Wallace, 1973) have been
applied to study stochastic activity networks.

The lack of realism is further strengthened by the pres-
ence of dependencies between unknown events that typify
project progress. The simple use of statistical distributions
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schedule risk analysis dimension is more complete when
non-standard risk distribution profiles for activity durations
were defined. The default distribution used is the triangular
distribution with symmetrical tails to the left and right, but
when these distributions have been replaced by other dis-
tributions, the data is said to be more complete. The project
control dimension requires periodic data on real durations
and costs in order to generate performance data using the
EVM methodology. This data can be easily generated using
Monte Carlo simulations described in Vanhoucke (2010a),
but when the tracking data was available and originated
from user input instead of from simulations, the project is
said to be more complete.

4.1.2 Authenticity

Next to an indication of whether the data are complete
or not, the concept of authenticity was also introduced to in-
dicate the source of the data and the degree of assumptions
that had been made while entering the data. A distinction
has been made between project authenticity that is used for
the static data parameters and tracking authenticity that is
relevant for the dynamic data parameters.

The project authenticity is said to be high when all static
parameters, including activity, resource and (baseline)
cost data were all obtained directly from the actual project
owner. Full authenticity of data thus implies that the data
collector did not make any personal assumptions regarding
the relevant data types. It should be mentioned that it is per-
fectly possible that no data for resources is available (result-
ing in a lower completeness value) while still having a fully
authentic project when no assumptions have been made for
the remaining static data that were available.

The tracking authenticity is used to assess whether or not
the dynamic data described in section 4.2 are authentic, and
full tracking authenticity is achieved when the tracking data
that were obtained from the project owner include actual

activity start dates, durations and costs, without any modifi-
cation or assumption made by the project collector. Both the
project and tracking authenticities are evaluated according
to the same color code-based approach as presented for the
project completeness.

The concepts of completeness and authenticity could
also be easily used for the artificial data described in the
previous sections, but should lead to obvious results. Thanks
to an artificial generation process using network topology
and resource parameters, the static data could easily result
in a 100% completeness, but due to its artificial nature the
data would always be 0% authentic. The dynamic data is
somewhat different. While the data for the schedule risk
analysis dimension could vary from theoretical and artificial
to inspired on real distributions, resulting in various values
for completeness and authenticity, none of the previously
described artificial datasets have project control data, and
hence, have a zero completeness and authenticity score on
this third dimension.

4.2 Data parameters

Table 2 gives an overview of the static and dynamic
parameters for the empirical data, split up in nine subsets
reflecting data for different sectors. The table has a similar
structure as Table 1, but now includes not only static data
(network topology and resource parameters) but also dy-
namic data parameters. Obviously, the table does not report
values separated by a semi-colon (class I in the paragraph
“Summary table and critical remarks” of section 3.1.3) since
none of the networks have been generated. All data have
been collected from real projects, and therefore, all values
have been calculated afterwards upon availability. Appendix
A provides a summary of the parameters with references to
literature.

TABLE 2. Details of nine classes of empirical datasets used in academic research (including static and dynamic parameters)

Static Project Data

General Network Topology Renewable Resource Parameters
Sector #1nst # Act (or 11) CNC os SP (or 12) AD (or 13) LA [or 14) 15 TF (or 16) RI #RR RF RU RS RC
Construction (civil) 12 73 122 057 043 0.48 0.18 086 031 071 7 0.48 204 0.30 0.54
@ Construction {commercial building) 12 67 126 0.61 044 0.54 0.22 0.86 0.29 078 8 0.30 1.05 064 0.56
3  Construction (industrial) 6 151 0.86 0.16 012 035 0.17 0.8s 043 0.60 20 0.15 247 0.65 0.42
E Construction {institutional building) 5 127 0.86 0.36 037 0.64 0.06 096 0.56 087 - - - -
% Construction (residential building) 9 as 121 0.62 049 052 0.1 089 0.25 083 6 0.47 153 053 0.56
= Education 2 123 on 0.06 0.14 049 0.00 100 0.60 086 2 0.75 125 041 052
g Event Management 3 a0 1.40 0.49 031 0.45 0.10 081 0.14 058 6 037 128 049 063
“om 5 84 110 0.68 053 0.56 0.15 082 0.16 072 5 039 130 053 0.70
Production 2 26 0.77 0.49 048 0.82 0.00 093 047 0.81 - - = -
General Nonrenewable Resource Parameters Time Data Cost Data SRA Distributions
Sector #NR RF RS PD [days] Fixed Cost [€] Variable Cost [€] Resource Cost [€] BAC [€] Symmetrical [%] Skewed [%] No Risk [%]  Non-standard [%]
Construction (civil) 2 027 100 445 435,253,639 186,632 69,664,583 505,104,854 965 25 0 1.0
Th e tabl e g Construction (commercial building) - = - 253 815,489 196,901 169,046 1,181,436 875 as 26 9.4
g Construction (industrial) 389 26,236,424 17,662,574 12,069,522 55,968,520 9.1 26.7 a2 0
i 1 % Construction (institutional building) mn 5,424,084 4,026,616 o 9,450,699 984 13 03 [
Is conti nued 9_ Construction (residential building) 294 4,690,247 487,652 55473 5,233,372 100 0 0 ]
he re 2 Education 131 90,000 2,792 21,530 114,321 732 41 28 [
% Event Management 237 25,827 0 15,435 41,262 636 13.2 23 08
wor 139 33,780 933,332 104,183 1,071,296 99.8 o [ 02
Production 323 533,024 [+] o 533,024 100 [+] 0 0
Dynamic Project Data
General Project Control
Sector # Periods Dev. Dur. [%] Dev. Cost [%] Avg. SPI Avg. SPIft)  Avg.CPI Avg. p-factor
Construction (civil) 101 01 105 0.95 0.96 119
The table @ Construction (commercial building) as 56 86 322 114 105 094
. . d 3 Construction (industrial) 156 384 135 078 0.76 093 0.98
IS continue 2 Construction (institutional building) 52 224 108 087 077 094 093
he re S Construction (residential building) 107 108 94 089 028 081 0.99
g Education 13 135 933 0.78 078 052 0.84
El Event Management - - - - - - -
L |} 28 188 29 0.88 oss8 098 0.98
Production 60 235 03 0.80 0.73 097 0.98
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4.2.1Static data

Most of the static parameters for the empirical data are
identical to the artificial parameters and will not be repeated
here. However, some new static parameters are shown in
the table, which illustrates that empirical data are used for
research in a different way than artificial data. These new
parameters can be classified in two categories, as explained
along the following lines.

First, a new parameter has been defined as the Regular/
Irregular (RI) indicator, originally proposed by Batselier
and Vanhoucke (2015b) and defined in a similar way as the
Serial/Parallel (SP) parameter presented earlier. However,
the RI parameter not only measures the structure of the
network as is the case for the SP parameter, but also takes
cost information and the timings of the project’s baseline
schedule into account. More precisely, the parameter reflects
the cost accrue of a project from its start to its planned fin-
ish, and is used to provide a better indication of the expected
accuracy of a certain dynamic control method using EVM.
Just as a completely serial project has an SP of 1, a perfectly
regular project - that is a project with a perfectly linear cost
accrue - is characterized by an RI of 1. At the opposite end
of the regularity spectrum, a maximally irregular project
is represented by RI = 0 and occurs when the cost accrue is
zero throughout the entire project life and suddenly jumps
to the project budget at the project finish. Just like for the SP
parameter, projects with different degrees of regularity are
situated between these two extreme cases. Since none of the
artificial projects contain cost data, the RI value has never
been reported there. The main reason for the lack of cost
data for artificial projects is that (i) costs are mostly irrele-
vant for scheduling projects (as is the case for e.g. the RCPSP)
or (ii) - if relevant - they can be easily generated by generat-
ing random numbers. The latter has been done for solving
the RPCPSDC using the DC1 and DC2 datasets. Moreover,
Vanhoucke (2010b) has uploaded some of the generated
numbers in cash flow files so that other researchers make
use of the same cost data when comparing algorithms.

A second important difference is that the static data for
the empirical projects also contains the parameters Planned
Duration (PD, expressed in working days) and parameters for
the project costs, displayed as Budget At Completion (BAC)
in Table 2 to be in line with the terminology of EVM. This
total planned project cost is further split up into fixed ac-
tivity costs (€), variable activity costs (€), and resource costs
(€). The reason why cost values are not available for artificial
data has been discussed in the previous paragraph. The rea-
son why values for the project durations are not available for
artificial files lies in the fact that project durations are the
result of the construction of a baseline schedule, and hence,
is the outcome of a scheduling algorithm. This algorithm
is developed by a researcher who makes use of the artificial
data to test its quality hoping the results will outperform all
previous algorithms on some criteria so that his/her hard
work leads to a new academic publication. Consequently,
the planned values for project durations are the output of
the research, while they can be considered as input by the

project manager who has put his real data available to the
empirical database. The best (i.e. the lowest) found project
durations for many of the artificial projects are often found
by different researchers using different algorithms, and are
referred to as best known solutions (BKS). For some of the
artificial datasets, the BKS are displayed in the MS Excel file
previously mentioned.

4.2.2  Dynamic data

Dynamic data are the core of empirical project data since
they reflect reality. As previously mentioned, the dynam-
ic data can be split up into input distributions necessary
to perform simulation studies for schedule risk analyses
and data to monitor the progress of the project for project
control. These two classes of dynamic data will be briefly
discussed along the following lines.

© Schedule Risk Analysis: An SRA requires distributions of the
activity durations in order to perform Monte Carlo simulations to
measure the time/cost/resource sensitivity of project activities.
These distributions are classified into four categories. The
activities without uncertainty are assumed to be deterministic
and are labelled with “No Risk”. All others have distributions
that can be symmetrical (“Symmetrical”) or have a certain
degree of skewness (“Skewed”). The symmetrical distributions
are assumed to be triangular distributions defined by lower
(a) and upper values (b) and the mode (m) expressed relatively
to the baseline duration of the activity. As an example, using
a standard symmetrical distribution with parameters (a, m,
b) = (80%, 100%, 120%) for an activity with an estimated
baseline duration of 10 days will have lower and upper values
equal to 8 days and 12 days, respectively, and a mode equal
to 10 days. The skewed distributions consist of left skewed
distributions with (a, m, b) = (80%, 110%, 120%) and right
skewed distributions (a, m, b) = (80%, 90%, 120%). All other
distributions mentioned under the label “Non-standard” have
another degree of skewness, or are even more advanced than
using three point estimates that typify triangular distributions.
Each activity of each project belongs to one of these classes,
and a summary is given in the table that takes into account
the size of the projects. More precisely, rather than simply
reporting the average percentage of activities over all projects
that belong to each class, a weighted average has been used
taking the number of activities for each project into account.

As an example, assume two projects, one project with 10
activities and all activities (100%) assigned to a symmetrical
distribution, and another project with 100 activities with

50 activities (50%) assigned to a symmetrical distribution
and the other 50 activities (50%) to a non-standard
distribution. Instead of reporting the unweighed

100%+50%

— 750/ 100%+*10+50%+*10
values 2

‘ (Symmetrical) and 110

(Non-standard) that largely ignore the size of each project, the

100%+*10+50%+*100

. = 559
table reports weighted values as 110 %

(Sym-
0%*10+50%%100

. = 459
metrical) and 110 %

(Non-standard) to better
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reflect the degree of classification in each distribution class

relative to the size of the projects.

© Project Control: The project progress data used for project
control consists of actual durations and costs for the project,
known upon the project finish, as well as intermediate values
collected during reporting periods when the project was in
progress. Both the actual duration (in working days) and the
actual cost () of the project belong to this first class and report
real values for the time and cost aspect of the project. In the
table, these values are reported as a percentage difference in
comparison with their planned values reported by the static
data parameters (with a positive number reflecting behind
schedule/over budget and a negative number reflecting ahead
of schedule/under budget). Intermediate data collected during
the project life are collected at different time instances, and
are represented by the number of reporting periods (# Periods)
for which the performance of the project was measured. This
number is equal to the total number of periods for which
control data using EVM were gathered - rather than the average
number - to give a good indication of the considerable amount
of available data for project control. For projects without data of
intermediate progress, this number is set to zero. These periodic
measurements have resulted in various performance measures
that indicate how the project is doing so far with respect to time
and cost, and for which the average values (over all periods) are
reported for the Schedule Performance Index (“Avg. SPI” and “Avg.
SPI(t)”), the Cost Performance Index (“Avg. CPI”), and the p-factor
that measures schedule adherence (“Avg. p-factor”). These
measures all belong to the EVM methodology and a discussion
of these metrics and their formulas is outside the scope of this
paper. Interested readers are referred to Vanhoucke (20104,
2014). Note that these values are calculated as the averages (for
a certain sector) of the average SPI/SPI(t)/CPI/p-factor over all
control periods (# Periods) of the projects in that sector, and
not as the average of the final values at the project finish.

4.3 Evaluation

It has been previously mentioned that the use of empir-
ical data is often favoured over the generation of artificial
data due to their automatic reality check and their strong
link with practical relevance. This practical realism is
certainly one of the main advantages of using real project
data, and it should be fully exploited for research purposes.
Surprisingly, the real advantage of empirical data is that it
can be used to create artificial data for simulation experi-
ments and the like, by transforming the historical data into
statistical distributions. As mentioned earlier, no problem
for static, but a challenge for dynamic data. The method of
Trietsch et al. (2012) and the application of this method by
Colin and Vanhoucke (2015b) have been mentioned earlier in
section 3.2 on using dynamic project data and are methods
that enable researchers to transform empirical data points
into statistical distributions for artificial project progress
experiments. These methods show the relevance and impor-
tance of empirical data for research, since they connect the
advantage of the realism of empirical data with the power of
generating lots of artificial data in computer experiments.
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The use of empirical project data is however not with-
out danger. It must not be forgotten that the ultimate goal
of research on integrated project management and control
is to improve the decision-making process during project
progress. Indeed, the periodic dynamic data of projects are
used as triggers for actions, often presented in performance
indices and key performance indicators using EVM methods
and the like. These triggers should be used in a careful way
and should enable the project manager to take actions and
spend time and money to solve problems, but should also
refrain the project manager from taking actions when the
project indicators report false problem warnings. The recent
approaches of action tolerance limits (Colin and Vanhoucke,
2014), statistical project control (Colin and Vanhoucke,
2015a), artificial intelligence methods (Wauters and Van-
houcke, 2014) and decision support systems for project
control (Hazir, 2015) all need the three components of the
dynamic scheduling framework to a certain degree, and are
set up to facilitate and/or improve the ability and quality of
these corrective actions. The main purpose of many of the
research studies is to contribute, directly or indirectly, to
this challenging goal and to present methodologies to better
control projects in progress and improve corrective actions,
hereby assuming that these improved actions result in an
increasing level of project success. The major and inherent
weakness of empirical data lies in this fundamental and cru-
cial research goal, since these empirical data include many of
these corrective actions - often unknown. Since the empir-
ical and periodic data points have been collected by project
managers in charge of real projects, their ultimate (and
probably only) reason why they have collected the data in the
first place was not to share it with researchers but to support
corrective actions. However, it is difficult, if not impossible,
to distinguish between data with or without actions, since
these two scenarios are never available in reality, and the
actions are often unknown and only very vaguely described
when asked to the manager. Often times, researchers end
up with empirical data that include (unknown) corrective
actions.

Despite this inherent weakness of empirical data, the
advantage of using the historical data for artificial academic
use offers a major contribution on top of solely using artifi-
cial data points. Therefore, the classification scheme present-
ed in the project cards methodology of previous section is
conjectured to be only a first step in the search for more and
richer empirical data that can be used in academic research
and transformed to controlled artificial data that better
reflect reality in order to bring the newly developed meth-
odologies even closer to the needs of professional project
management.

. Conclusions

In this paper, an overview is given on the use and gener-
ation of project data for integrated project management and
control that focuses on the construction of a baseline sched-

ule, the analysis of the schedule risk and the use of project
control performance measures along project progress. It has
been shown that the research endeavours of the past decades
have collected and generated data from various sources,
sometimes under a carefully controlled design, other times
serving the specific needs of a research study but with no
potential to be used elsewhere in literature.

A distinction has been made between static and dynam-
ic project data, reflecting the way the data are used in the
project life cycle. While the static data rely on network and
resource parameters that can be varied over various values
to generate project data under a full factorial design, the dy-
namic data are subject to choices that ideally should reflect
real project progress. While the use of statistical distribu-
tions based on theoretical knowledge and historical data has
been widely investigated in the literature, there is still no
unified approach available for dynamic data generation.

Furthermore, a second distinction has been made
between the generation of artificial project data and the
collection of empirical project data, and it has been shown
that both have value since they serve different purposes.
While the artificial data allow an easy and controlled design
of parameters to fully test new methodologies in literature,
the drawback is that their parameters might not reflect real
settings that occur in reality. This is particularly relevant
and critical for the dynamic project data, and less relevant
for static project data. The use of empirical data overcomes
these drawbacks, but there still lacks a unified approach
for the generation of artificial data, which remains subject
to random choices for selecting distributions that imitate
reality.

The previously mentioned shortcomings immediately
define the future needs for project data generation to further
enhance the research on integrated project management
and control. A stronger synergy between empirical data and
artificial data is necessary to increase the realism of research
experiments. While this synergy is probably less critical
for the static project data, it is undoubtedly crucial for the
dynamic project data. While the generation of static project
data under various settings for a set of parameters is likely
to generate projects that also occur in practice, the imitation
of project progress using artificial dynamic data is prone to
errors or oversimplifications, and hence, to deviations from
reality. A stronger link between empirical data and artificial
data should reduce this risk by translating observations from
reality into approaches for artificial data generation. While
some efforts have been made in the past to propose mecha-
nisms to derive dynamic data from empirical observations,
it is believed that much more can and must be done in the
future to formalize this artificial dynamic data generation
process for use in an academic setting.
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APPENDIX A - LIST OF FORMULAS

This appendix (Table 3) gives a short and unambiguous
overview of both the static data parameters used to measure
the network topology and resource scarceness in section
3.1.1and the dynamic data parameters used for the empirical
data described in section 4.2. The table does not provide
references to the original papers of the parameters, since
these references have been mentioned throughout the

text. Instead, it provides references to equations published
in the academic literature so that the reader knows which
formula has been used to calculate the network topology
and resource parameters. This is particularly important for
the static resource parameters, and more precisely, for the
CNC and RS for renewable and nonrenewable resources
used for the RCPSP and the MMRCPSP discussed in the
paragraph “Summary table and critical remarks” of section
3.1.3 where it has been shown that alternative formulas are
in use for the same parameter. These formulas have been
used to calculate the values of the parameters shown in the
summary tables 1and 2. The values of all the parameters for
the individual project files of each dataset are also available
in an MS Excel file that can be downloaded from http://

www.projectmanagement.ugent.be/research/data.

Static data
Network topology parameters
Number of direct arcs divided by number of nodes in the network (In this

CNC paper, the calculation without dummy nodes as in Vanhoucke et al. (2008) is
used and not the definition of Kolisch et al. (1995))
os Number of direct and indirect ares divided by the maximum number of arcs
SP (or Iy) Table 2 in Vanhoucke et al. (2008)
AD (or I3) Table 2 in Vanhoucke et al. (2008)
LA (or 1) Table 2 in Vanhoucke et al. (2008)
)

1y Table 2 in Vanhoucke et al. (2008

TF (or Ig) Table 2 in Vanhoucke et al. (2008)

Resource parameters (for renewable resources (RR) and nonrenewable resources (NR))
Single mode RCPSP

RF (RR) Equation (1) of Demeulemeester et al. (2003)
RU (RR) Equation (2) of Demeulemeester et al. (2003)
RS (RR) The equation (3) of Demeulemeester et al. (2003) has been extended with an

extra condition and is now calculated as:
if > pnar mar _ Lmin
FSm { “‘j: if a; > r**For r‘ g
P — otherwise
where ag denotes the total availability of renewable resource type k, r"*" equals
the maximum resource demand for all activities i to n, i.e. max,— _, i (nis
equal to the number of nondummy activities and r;; is the resource demand of
activity i for resource type k) and r['®* denotes the peak demand of resource
type k in the precedence preserving earliest start schedule
RC (RR) Equation (4) of Demeulemeester et al. (2003)
Multi-mode RCPSP
RF (RR) Idem as for RF (RR)
o Equation on page 36 of Demeulemeester et al. (2003) and not the definition of
RS (RR) Kolisc b
olisch et al. {1995)

RF (NR) Idem as for RF (RR)

RS (NR) Equation (8) of Van Peteghem and Vanhoucke (2014)

Other data parameters (only available for empirical projects

RI Equation (2) of Batselier and Vanhoucke (2013b)

PD Planned Duration (c¢f. examples in Vanhoucke (2014))

BAC Budget At Completion (cf. examples in Vanhoucke (2014))
Dynamic data (example calculations can be found in Vanhoucke (2014))

Dev. Dur. Difference between Real Duration and PD

Dev. Cost Difference between Real Cost and BAC

Avg, SPI Average SPI = EV / PV for all periods

Avg. SPI(t) Average SPI(t) = E AT for all periods

Avg. CPI Average CPI = EV AC for all periods
Avg. p-factor  Average p-factor value for all periods

TABLE 3. Summary of formulas for the static and dynamic parameters
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