
KEYWORDS f genetic algorithm f project scheduling
f parameter control f self-adaptive

SELF ADAPTIVE MECHANISM

r A B S T R A C T

The present paper introduces a novel two-part self-adaptive technique in designing

the genetic algorithm for project scheduling problems. One part of the algorithm

includes a self-adaptive mechanism for genetic operators like crossover and mutation.

The second part contains another self-adaptive mechanism for genetic parameters

such as crossover probability. The parts come in turn repeatedly within a loop feeding

each other with the information regarding the performance of operators or param-

eters. The capability of the method is tested and confi rmed in comparison to meta-

heuristic and exact algorithms based on well-known benchmarks.

D O I N U M B E R : 1 0 .1 9 2 5 5 /J M P M 0 1 1 0 5

 SEPTEMBER – DECEMBER 2016 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 65

A TWO-PART
SELF-ADAPTIVE
TECHNIQUE IN
GENETIC ALGORITHMS
for Project Scheduling Problems

Probability. As diff erent alternatives
for each component (operator and
parameter) of GA is available in the
literature, GA practitioners always face
two questions. Which alternative of
genetic operators should be chosen and
on what level each parameter should be
set to guarantee good results?

Many eff orts have been put for-
warded to answer the above questions.
Th ese eff orts can be classifi ed to pa-
rameter tuning and parameter control.
Parameter tuning approaches seek a
proper combination of alternatives for
components of GA based on an analy-
sis of results reported by the GA tested
on a set of problems representative for
the problem instances. Noticeably, the
components are known before running
the GA and remain constant during the
run [7]. Of diff erent parameter tuning
approaches, the statistical methods are
more favorable. For a review, please see
[19] - [30]. According to [7], although
parameter tuning is suitable for a large
number of situations, it may not lead to
the best possible GA because the test
problems not only are heterogeneous
but also cannot be actually viewed as
the representative for the real-world
situations. In addition, due to the
nature of some components that may
perform well in early generations and
some others that act better in later
generations, parameter tuning may not
work well. Th erefore, the parameter
control comes into picture as an alter-
native case in which the components
are not fi xed during the run of GA
and the best combination is detect-
ed throughout the search. Th is case
requires initial parameter values and
suitable control strategies. References
[29] and [31] classifi ed the parameter
control procedures into three classes
of deterministic [32], adaptive [33],
and self-adaptive. Th e third class, the
self-adaptive parameter control proce-
dure, encodes the components within
each solution of the GA and discovers
the best ones via a feedback-based con-

trol strategy. Reference [34] introduced
an interesting self-adaptive mechanism
for crossover operator in which one bit
is appended to the end of each solution
to show which alternative of the oper-
ator has created the solution. Th e bit
helps the GA choose better alternatives
with regard to their corresponding
fi tness. When, for example crossover
operator, is to be performed, this bit
signals the algorithm to employ the
most adapted alternative for crossover.
In doing so, the related bits of all the
solutions are evaluated and the alter-
native with more repetition is known
as the most adapted one. Reference [35]
showed a mechanism to adapt the mu-
tation probability in a model of parallel
GA. Reference [36] includes two levels
of GAs. While the meta-level evolves
a population of parameters, the basic
level operates on the best set of param-
eters obtained by the meta-level. Ref-
erence [37] introduced an approach for
selecting parameters by establishing a
competition among several subpopu-
lations, where each subpopulation uses
diff erent sets of parameters. Th e addi-
tional processing time is given to the
populations with better parameter sets.
Some of the other adaptive GAs such as
[38] - [40] are to adaptively control the
diversity of population. Owing to the
effi ciency of self-adaptive techniques
in the GA, they have been continually
used over years in the literature (please
see [41] - [49]).

Despite a multitude of GA-based
eff orts done on PSPs, a few of them
have considered self-adapting GAs.
Some of these works are [7], [50] and
[51]. Besides, most of self-adaptive GAs
suggested for PSPs have focused only
on one or a few characteristics of the
GA to design an eff ective algorithm,
whereas the GA has many components
that impress its eff ectiveness and need
more comprehensive attention. A ro-
bust GA cannot be devised unless best
alternatives of genetic operators and
parameters are revealed through a pro-

cess examining diff erent combinations
of alternatives. Nevertheless, there has
been less attention so far in designing
the GAs for PSPs that utilize param-
eter control techniques, especially for
the situation in which selecting good
operators as well as setting good values
to the parameters is desired simulta-
neously. In this paper, we introduce a
more comprehensive method in which
most of the vital elements impressing
the performance of the GA are fi rst
designed. Th en, a two-part self-adap-
tive GA in which one part relates to
the adaption of operators and the
other part attributes to the adaption of
parameters is applied to bring a more
thorough approach about.

Th e paper is structured as follows:
Section 2 describes the proposed meth-
odology for the PSPs. Section 3 inves-
tigates the application of the method-
ology on two diff erent PSP problems.
Section 4 gives the computational
results of the proposed methodology
in comparison to other metaheuristics
as well as exact procedures. Finally,
the conclusion of the paper comes in
Section 5.

2. The proposed
methodology

Th e present study addresses a new
method that combines previously-de-
vised parameter control techniques
to tackle the PSPs. Th e proposed GA
consists of two parts coming in turn
repeatedly within a loop and providing
input data for each other. One part
(OAP: operator-adapting part) concen-
trates on genetic operators and uses a
self-adapting mechanism to gradually
detect the best alternative for each op-
erator. Th is self-adapting mechanism
actually acts like a feedback system
that records and returns the fi tness of
alternatives when implemented on a

r Aria Shahsavar
Qazvin Islamic Azad University
m.shahsavar@ymail.com

r Seyed Taghi Akhavan Niaki
Sharif University of Technology
niaki@sharif.edu

r Amir Abbas Najafi
K.N. Toosi University
of Technology
aanajafi @kntu.ac.ir

1. Introduction
Th e project scheduling prob-

lems (PSP) seek the most favorable
schedule for a set of activities linked
together with precedence relations
in such a way that one or some goals
are achieved while no violation of
resource limits occurs [1]. Generally,
network diagrams with activities
and precedence relations represent-
ed by nodes and arcs are utilized
to depict PSPs. Th e PSPs involve a
wide variety of models, of which
1) resource-constrained project

scheduling problem, 2) resource in-
vestment problem, and 3) resource
leveling problem are known as the
basic models upon which other
models are created. According to
[2], PSPs are of the most demanding
problems in operations research for
which a large number of heuristics
have been proposed. Among a mul-
titude of heuristics applied on PSPs,
the genetic algorithms (GA) have
been one of the most successful and
favorable methods. For a review of
GAs devised for these general class-
es of PSPs, one can refer to [3] - [17].

Th e GA inspires its soul by
natural selection and survival of

the fi ttest [18]. Th e algorithm goes
through a population of solutions
and evolves stepwise by joining the
features of solutions. In each step,
the current solutions are selected
as parents to be recombined and
mutated in hopes of discovering
children with superior character-
istics. Such operations generally
are conducted by means of genetic
operators such as Parent Selec-
tion, Crossover, and Mutation. To
maintain the randomness of the
search, the operators are carried out
probabilistically during the GA by
some random parameters such as
Crossover Probability and Mutation

 SEPTEMBER – DECEMBER 2016 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 6766 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | SEPTEMBER – DECEMBER 2016

SELF ADAPTIVE MECHANISM /// A TWO-PART SELF-ADAPTIVE TECHNIQUE IN GENETIC ALGORITHMS FOR PROJECT SCHEDULING ...

population of basic problem solutions.
Then in the later generations, high
quality alternatives are given more op-
portunity to be implemented. The other
part (PAP: parameter-adapting part)
focuses on parameters and functions
in such a way that discovers the best
levels of parameters leading to better
performances. Similarly, this part has a
self-adapting mechanism that feeds the
reports of parameter effects back to the
algorithm.
2.1 Initialization of
the proposed GA

At the advent of this GA, a popula-
tion of the basic problem solutions (P1)
for the PSP, and a population of proba-
bilistic parameter sets (P2) is randomly
produced. Both populations are equal
in size and each solution of P2 contains
a different set of parameters which
contributes to one specific solution of
P1. Besides, different alternatives are
devised for genetic operators and are
given the same opportunity to be im-
plemented in the first step of algorithm.
2.2 Adaption rate calculations

The adaption rate means the op-
portunity given to each alternative or
parameter value to be employed and
changes within the algorithm based
on the influence they have had on the
evolution of GA. The adaption rate of
an alternative is calculated based on the
fitness of the solutions created by that
alternative. Moreover, the adaption rate
of each parameter set is also calculated
based on the fitness of the solutions
created by that set.
2.3 Fixing the alternatives
and parameters

In order to eliminate the effects of
parameters on the function of opera-
tors and vice versa, the OAP is executed
in the presence of fixed parameters and
the PAP is performed in the presence of
constant operators. The parameters fed
to OAP and operators fed to PAP are
fixed by the following way. The value of
parameter i is set to the average of all
values of that parameter through the
entire P2. In addition, one alternative
for each operator is fixed probabilisti-
cally based on the adaption rates of al-

ternatives. Actually for each alternative,
the higher the adaption rate, the higher
the chance of being fixed.
2.4 Operator-adapting part (OAP)

In the OAP, the approach suggested
in [34] that appends a bit to the end
of every solution for each operator is
used. For instance, suppose an extra
bit is added to the end of solution for
crossover operator and let “0” refers
to one-point crossover and “1” refers
to uniform crossover. If the one-point
crossover can create better solutions,
then more “0” is appeared in the crosso-
ver-related bit during the evolution of
GA. Note that, a mechanism that gives
greater rewards to better alternatives is
needed. For this purpose, imagine A1%
of the extra crossover-related column
of the population contains “0” and A2%
contains “1”. Let f and f be the mean
fitness of A% and A% of the popula-
tion, respectively. Then, the adaption
rate of the crossover alternative i is

calculated as . When recom-
bining, either the one-point alternative
with probability of F or uniform alter-
native with probability of F is selected.
Therefore, if the one-point crossover
performs better during the algorithm
process, the higher F is anticipated.
After recombination, if the one-point
crossover was the processor, the cor-
responding bit would change to “0” if
necessary. As the algorithm evolves,
better alternatives create bigger part of
the population and their adaption rates
increase.

After some generations, the OAP
stops and introduces the more adapted
alternatives with higher adaption rates.
Note again that, the parameter values
are constant during all generations of
OAP.
2.5 Parameter-adapting part (PAP)

The PAP acts similar to [36], in
which two levels of genetic algorithms
are considered. The meta-level evolves a
population of parameter sets (P), while
the basic-level operates on the problem
solution population (P). In the me-
ta-level of GA, a solution is represented
by characteristics of parameters. For

example, when the crossover proba-
bility and mutation probability are the
subject of PAP, a vector with two cells;
each including a real value for either of
crossover or mutation probabilities is
devised. The meta-level GA possesses
its own characteristics and operators
to operate on P in pursuit of the best
possible values of parameters. A ques-
tion that may arise here is that how the
fitness of parameter sets is evaluated.
As mentioned before, each solution in
the meta-level of GA is contributed to
a specific solution in the basic-level of
GA. Therefore, when a generation of
P is produced, a run of the basic GA
is also conducted. In running the basic
GA, the constant adaptive operators in-
troduced by OAP is used together with
the different parameter sets of P. Since
the operators are constant and param-
eters are different, different results of
the basic-level can be strongly referred
to the effects of parameters. As a result,
the fitness of each solution in the ba-
sic-level is considered as the fitness of
its corresponding parameter set. Next,
relying on the known fitness of param-
eter sets, another generation of me-
ta-level GA is produced and its fitness
is calculated by running the basic GA
accordingly. The process proceeds for a
few numbers of generations. Finally, the
parameters adapted on proper sets are
fed to the OAP.
2.6 The general scheme
of the proposed GA

The algorithm starts with OAP
focusing only on the adaption of
potential alternatives for operators.
The OAP repeats its contents giving
greater rewards to well-performed
alternatives to produce some genera-
tions while recording the adaption rates
of alternatives. Then the alternatives
with higher adaption rates are intro-
duced to the PAP. The PAP informed
of adapted alternatives proceeds for a
specific number of generations while
recording the adaption rates of param-
eters. Finally, the PAP transmits the
adapted parameters to the OAP. Now
one loop finishes and the other starts.
This process proceeds until the stop-
ping criterion of the algorithm is met.
The pseudo-code of the proposed GA

is shown in Figure 1 wherein N is an even positive integer that
specifies the number of generations produced within both
parts of the algorithm. In addition, shows the number
of loops needed to terminate the algorithm.

Since operators have much fewer alternatives than pa-
rameters whose alternatives are selected within a continuous
range, the algorithm needs more efforts in order to find the
adapted values of the parameters. Therefore, in this GA the
more loops are run, the more generations are assigned to
self-adapting mechanism of parameters.

The flowchart of the proposed GA is also shown in Figure 2.
A striking point regarding the proposed method is that,

it is applicable to any branch of PSPs because of its compat-
ibility with any type of the solution representations known
in the literature for the PSPs. Typically, the most prevalent
representation styles used in PSPs can be classified into three
types; first, an activity list representation [6], second, the
random key representation [13], and third, the real schedule
representation such as a vector of starting times [9]. Add-
ing the extra bits to solutions employed in OAP and using
a sequential GA like the one employed in the PAP are both
possible in all of these solution representation kinds. There-
fore, the method can be applied on every branch of PSPs.

3. Application of the methodology on PSP
The resource investment problem (RIP) and its extensions
are a class of PSPs in which the resource availabilities are
considered as decision variables of the model. In the following
sub-sections, the proposed methodology is firstly applied on
the basic RIP and then is applied on the RIP with discounted
cash flows (RIPDCF) to provide more reliable results.

3.1 Application on RIP

The basic RIP aims at minimizing the renewable re-
source costs of the project [52]. Suppose a project in an AON
network G=(E,V) in which V shows activities and E shows

the precedence relations of activities. The project has n+1
activities where two dummy activities 0 and n represent the
starting and finishing points of the project, respectively. The
generalized precedence relations with minimal and maxi-
mal time lags link activities together where lij is the time lag
between the starting times of activities i and j, (i,j) G. The
RIP with generalized precedence relations is referred to RIP/
max. Each activity i has a fixed duration di and requires rik
units of resource k, k=1, 2, ... , K to be executed. Employing
each unit of resource k imposes a cost CK on the project. In
addition, the project has to be finished before deadline T. The
objective of the model is finding a schedule for activities and
a level of employment for resources so that the total costs
of the project resources are minimized. The RIP/max (RIP
under generalized precedence relations with minimal and
maximal time lags between activities) can be formulated in
the following way.

In this formulation, xit is a zero-one variable where xit = 1
if the activity i starts at time period t, otherwise xit = 0. Rk is a
positive variable showing the employment level of resource k.
The objective function (1) minimizes the resource costs of the

FIGURE 1: The pseudo-code of the proposed GA

Initialize P1, P2, N, & L;

0=l ;

While Ll

• DO OAP:

- 1=i ;

- () ()()lroundN
L

NN
.

221 = ;

- Fix the parameter values;

- While
1

Ni

Using the adaption rate of alternatives Do:

o Parent selection

o Crossover

o Mutation

Update adaption rate of alternatives

1+= ii ;

- End

- Transmit the final adaption rates of operators to PAP

• DO PAP:

- 1=j ;

-
12

NNN = ;

- Fix the operator alternatives;

- While
2

Nj

Do basic GA:

o Parent selection

o Crossover

o Mutation

o Do meta-level GA for parameters:

Parent selection

Crossover

Mutation

1+= jj ;

- End

- Transmit the final adaption rates of parameters to OAP

• 1+= ll ;

End

Initialize P1, P2, N, & L;

0=l ;

While Ll

• DO OAP:

- 1=i ;

- () ()()lroundN
L

NN
.

221 = ;

- Fix the parameter values;

- While
1

Ni

Using the adaption rate of alternatives Do:

o Parent selection

o Crossover

o Mutation

Update adaption rate of alternatives

1+= ii ;

- End

- Transmit the final adaption rates of operators to PAP

• DO PAP:

- 1=j ;

-
12

NNN = ;

- Fix the operator alternatives;

- While
2

Nj

Do basic GA:

o Parent selection

o Crossover

o Mutation

o Do meta-level GA for parameters:

Parent selection

Crossover

Mutation

1+= jj ;

- End

- Transmit the final adaption rates of parameters to OAP

• 1+= ll ;

End

 SEPTEMBER – DECEMBER 2016 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 6968 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | SEPTEMBER – DECEMBER 2016

SELF ADAPTIVE MECHANISM /// A TWO-PART SELF-ADAPTIVE TECHNIQUE IN GENETIC ALGORITHMS FOR PROJECT SCHEDULING ...

To utilize the proposed methodology on the RIP/max,
we borrow the solution representation of [30]. The solution
is a vector including 1+n cells (1+n shows the number of
project activities) such that the value of cell i indicates the
starting time of activity i. In order to create a solution, the
activities are selected randomly and their starting times
are produced among their earliest and latest starting times
at random. After determining the starting time of each
activity, the earliest and latest starting times of its prede-
cessors and successors are updated to prevent the solution
from being infeasible. In [30], different alternatives for
Parent Selection, Crossover, and Mutation operators have
also been designed. The alternatives designed in [30] are
employed here to be the subject of the present self-adap-
tive GA. The description of designed alternatives for each
component in [30] is as follows.

The tournament selection, which is a fitness-based
parent selection, and the unlike selection that is not a
fitness-based parent selection have been devised as parent
selection alternatives. The one-point crossover and uni-
form crossover are the designed alternatives for recom-
bination. In one-point crossover, two parents are cut in
a middle point of the vector. The first part of the child is
filled directly by cells of the left part of the first parent and
the right part is filled by the use of the cells of the right
part of the second parent as follows. At first, the earliest
and latest starting times of activities with empty cells are
updated based on the starting times of the left activities.
Then for each cell i, if the value of the corresponding cell
of the second parent is positioned between the updated ESi
and LSi, it is fixed in the child, if it is smaller than the up-
dated ESi, the cell value is set to ESi, otherwise it is set to
LSi. In uniform crossover, the starting time of each activity
of child is chosen randomly among its corresponding cell
of one parent. Notice that, when a cell value is fixed, the
value of its successors and predecessors may be shifted
forward or backward to prevent the child from being
infeasible. In terms of mutation, two strategies are applied.
In the first mutation strategy, a mutation probability is
assigned to each child and then, either all or none of the
cells of that child are mutated. In the second strategy, a
mutation probability is assigned to each cell and then, that
cell is mutated independent of others. In order to mutate
one cell or one activity, its starting time is replaced with
new value generated randomly among its corresponding
earliest and latest starting time. Then, the starting times of
its successors and predecessors are updated for guarantee-
ing the feasibility.

For the PAP, we choose crossover probability and mu-
tation probability as the subject of self-adaption. Then, we
design a two-cell vector in which cell 1 relates to the cross-
over probability and cell 2 relates to the mutation prob-
ability. The cell 1 is randomly valued from the intervals
[0.6,1] and cell 2 within [0,0.3]. The self-adaptive mecha-
nisms for both operators and parameters are described as
follows. TABLE 1: Comparison results with exact solutions of RIP/max

Group No. of
activities

No. of bench-
marks

No. of
resources

Average. of
RDP1%

J10 10 90 1 0

90 3 0.1

90 5 0.5

J20 20 90 1 1.1

90 3 1.8

90 5 2

J30 30 90 1 1.5

90 3 2.5

90 5 4.4

a) OAP for RIP/max

We appended 3 bits at the end of each solution to show
different alternatives of three operators i.e. parent selection,
crossover, and mutation operator. The alternatives intro-
duced before for each operator are given equal adaption rates
in the first OAP. The GA is initialized according to Section
2.1 and then the OAP starts. During the OAP, the param-
eters fed by the PAP are fixed and the parents are selected
by either tournament or unlike selection regarding to their
adaption rates. They are then recombined by either one-
point or uniform crossover and continue with the mutation.
The adaptive mechanism relies on the fitness of solutions.
The best objective function found during the whole run of
GA is maintained. The fitness value of each solution is calcu-
lated based on division of the best objective function found
to the objective function of that solution. Accordingly, the
adaption rate of alternatives is computed via (7).

(7)

In (7), Ni is the number of alternatives of operator i and
f(j,i) is the mean fitness of the solutions created by the jth al-
ternative of operator i in the entire of population. Then, F(j,i)
calculates the adaption rate of the jth alternative of operator i.
It means that when one operator like i is on function, its jth

alternative is utilized with the probability of F(j,i). This part
terminates when a specific number of generations are creat-
ed and then reports the adapted alternatives to the PAP.
b) PAP for RIP/max

In the PAP, the previously described two-level GA is
applied. In the meta-level of GA, a solution in P2 is a vector
with two cells for crossover and mutation probabilities.
The meta-level of GA selects solutions in P2 by tournament
selection and recombines them by uniform crossover in
which each cell of parents has an equal chance to be present
in the child. For mutation, a cell value of a child is randomly
replaced by another random value drawn between its corre-

Parent Selection
Crossover
Mutation

Fix Parameters

i = 1
Compute N1

No
l > L

Initialization

i > N1

Update Adaption rates

i = i+ 1

Meta - GA

Parent Selection
Crossover
Mutation

Fix
Operators

j = 1
Compute N2

j > N2

j = j+ 1

l = l+ 1

l = 0

Stop

Yes

Yes

No No

Yes

Internal - GA

Parent Selection
Crossover
Mutation

Update Adaption rates

FIGURA 2: The general framework of the proposed algorithm

project. Constraint (2) forces every activity i to be started
only once between its earliest and latest starting time, ESi
and LSi respectively. Constraint (3) states that the project
should be finished before deadline T. Constraint (4) shows

generalized precedence relations. Constraint (5) shows
resource constraints. Constraint (6) introduces the domain
of variables.

 SEPTEMBER – DECEMBER 2016 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 7170 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | SEPTEMBER – DECEMBER 2016

SELF ADAPTIVE MECHANISM /// A TWO-PART SELF-ADAPTIVE TECHNIQUE IN GENETIC ALGORITHMS FOR PROJECT SCHEDULING ...

sponding range. The fitness of solutions in P2 is calculated by
running the basic level of GA wherein operators come from
adapted ones in the OAP and parameters from P2. After
running the basic GA, the fitness of solutions in new P1 is
set to the corresponding solutions in P2. Now, an iteration of
the meta-level GA terminates and another one starts. By this
way, not only the superior parameter sets are discovered but
also the quality of the basic problem population improves.
This part terminates after a few generations and feeds the
adapted parameters to the OAP.
3.2 Application on RIPDCF

Reference [14] investigates the RIP in the presence of
negative and positive cash flows with minimal and maximal
time lags (RIPDCF/max) whose goal is to find a schedule as
well as the employed levels of resources such that the net
present value (NPV) of the project cash flows is maximized.
The RIPDCF/max possesses some other characteristics
in addition to those of the RIP/max. Some payments are
received at some points of the project when a set of activities
finishes. Furthermore, a cost including material and over-
head costs is imposed on the project based on each activity.
The mathematical formulation of RIPDCF/max has been
given in [14].

We use this problem as the second and more complicated
case of project scheduling for testing our self-adaptive GA.
The solution representation and the alternatives of operators
designed for the RIP/max are all applicable in this situation
too. The only exception is that, in [14] a local search oper-
ator is extended for the RIPDCF/max which is applied on
each solution with a specific probability. Therefore, the local
search probability is another option for parameters which
must be considered in the PAP of the algorithm.
a) OAP for RIPDCF/max

The only difference between OAP for the RIP/max and
RIPDCF/max regards to the fitness calculation of solutions.
Since the RIPDCF/max is to maximize the NPV of the
project, the fitness of each solution is calculated as its NPV
divided to the maximum NPV found during the whole run
of GA.

The SA and SS are devised in the
following way. The solution representa-
tion for both algorithms is similar
to what used in the adaptive GA. In
the SA, a neighborhood is produced
by either a one-unit right shift in the
starting time of a randomly select-
ed activity or a one-unit left shift. In
order to prevent the new child from
being infeasible, after the right (left)
shift, the starting time of its successors
(predecessors) may be shifted forward
or backward. In addition, the common
cooling functions known as Ti = kTi
is employed to decrease temperatures
during the algorithm process where Ti
shows the temperature of cooling pro-
cess in period i and k is a coefficient.
As for the SS, the initial population is
generated similar to the adaptive GA.
The distance matrix used in the SS is
defined in (9) in which d denotes the
distance value, h1 and h2 denote two
population members, Si shows the
starting time of the activity i, i=0, 1,
..., n.

(9)

For the solution combination, the
uniform crossover designed for the
adaptive GA is taken into account.
When updating the reference sets, a
new solution enters the reference set
B1, the set with best solutions of the
population, if either the solution has
both a better objective function than
the worst objective function appeared
in B1 and a distance upon the threshold
on the smallest distance to any mem-
ber of B1 or it has a better objective
function only. In addition, a solution
enters the reference set B2, the set with
diverse solutions of the population, if
its distance is greater than the smallest
distance in B2.
a) Comparison to metaheuristics

The benchmarks employed here
includes 180 RIPDCF/max instanc-
es available in [14], 60 RIPDCF with
simple finish to start precedence
relations with zero time lags bench-
marks available in [14], and 60 RIPDCF
benchmarks produced by PROGEN.
Let the GA proposed in [14] be GA1,

the GA introduced in [30] be GA2, and
the present self-adaptive algorithm be
GA3. Table 2 shows the comparison
results of these five algorithms exper-
imented on 300 benchmarks. In Table
2, E shows the type of benchmark
examples where E1 stands for RIPDCF/
max and E2 for RIPDCF. In addition,
#P, #A, and #R denotes the number of
problems, activities, and resources,
respectively. Comparisons are based on
the relative deviation percentage shown
in (10), in which the best NPV for each
benchmark is the best found among all
of five algorithms.

 (10)

Table 2 reveals that the self-adaptive
GA is able to discover better solutions
than all of other tested algorithms
disregard of the type, size, or com-
plexity of test problems. The deviation
of the self-adaptive GA from the best
points is approximately less than 1%
in all levels of experimented problems
while none of other algorithms were
able find solutions with a deviation less
than 1% except for the problems with
10 activities which is very simple and
easy to solve. Looking at the average
deviation of GA2 (3%) and GA3 (1%),
it is concluded that, the results of the
present self-adaptive technique is even
better than the well-known parameter
tuning technique based on statistical
analysis employed in GA2.
b) Comparison to near exact solutions

Although LINGO software may
result in local optimal solutions for
non-linear models like RIPDCF/max,
its outcomes can be considered as near
exact solutions useful for situations
where no exact algorithm is available.
According to [14], LINGO was only
able to solve 115 out of 180 RIPDCF/
max test problems as presented in
Table 3. We do a comparison based on
these 115 test problems. Shortly, Table
3 shows that the results of the proposed
GA and LINGO differ only 0.75% on
average.

5. Conclusion
The GA is a powerful metaheuris-

tic widely used to solve demanding
PSPs. There are lots of alternatives for
operators and parameters of GA which
make GA practitioners confused how
to choose the best ones. The self-adap-
tive parameter control is a common
approach giving greater rewards to the
better operators and parameters to
participate more in the later process-
es of the GA. In this research, a new
self-adaptive GA useful for PSPs was
extended. The method has two parts
coming after one another for several
times during the search, providing
input data for each other. One part is
a self-adaptive mechanism to know
the best operator combination. The
other part is another self-adaptive
mechanism to discover best values
for parameters. The proposed GA was
implemented on two class of PSPs
namely the RIP/max and RIPDCF/
max. The results of the proposed GA
compared with exact solutions availa-
ble in PSPLIB for the RIP/max showed
a small deviation of 1.5%, on average.
As for RIPDCF/max instances, the
efficiency of method was measured
by comparing with four other meta-
heuristics including two GAs available
in the literature and two different
metaheuristic algorithms (SS and SA)
devised in this research. Comparisons
showed that the proposed GA is far su-
perior to others. In addition, the results
of the algorithm were only 0.75% devi-
ated from those of LINGO software in
RIPDCF/max problems. Referring to all
of these comparisons and evaluations,
we conclude that the proposed GA is 1)
more efficient than metaheuristic com-
petitors, 2) less-deviated from optimal
procedures, and 3) truly applicable on
all type of PSPs.

For future research, the method
can be applied on other combinatorial
optimization problems.

TABLE 2. Metaheuristic-based comparison results

E Source #P #A #R Average of RDP2 (%)

GA1 GA2 SS SA GA3

E1 Ref. [14] 60 10 1,3,5 0 0 5 0 0

60 20 1,3,5 5 3 12 4 0

60 30 1,3,5 11 3 16 4 1

E2 Ref. [14] 30 30 3,4,5 5 1 11 2 1

30 60 3,4,5 7 4 17 5 1

E2 PROGEN 30 90 2,4 10 3 17 6 1

30 120 2,4 12 4 19 5 1

TABLE 3. Comparison to Lingo results

No. of Prob-
lems

No. of Activ-
ities

No. of Re-
sources

Ave. of RDP2
(%)

60 10 1,3,5 0.09

39 20 1,3,5 0.83

16 30 1,3,5 1.32

b) PAP for RIPDCF/max

Since there is a local search for the RIPDCF/max, the
solution set of parameters has three cells for crossover, mu-
tation, and local search probability. The cells are randomly
generated from [0.6,1], [0,0.3], and [0,0.3], respectively. The
other processes of PAP for RIPDCF/max are completely
similar to the same process for RIP/max.

4. Comparison and Analysis
4.1 Comparison Results for RIP/max

In the project scheduling problem library (PSPLIB), there
are 810 RIP/max benchmarks solved by a branch and bound
algorithm proposed in [53]. This branch and bound algo-
rithm have found optimal solutions for 674 out of 810 test
problems.

All of these 674 test problems are considered to be solved
by our self-adaptive GA. Table 1 shows the comparison
results based on these benchmarks where RDP1 is calculated
according to (8).

 (8)

It is witnessed that, the algorithm is able to solve J10
group very well with an approximately zero deviation from
the optimal solutions (0.2% on average). It is also observed
that, the proposed GA still performs well with a deviation
below 2% for J20 and below 3% for J30, on average. In addi-
tion, the deviation seen for the most complex problems with
30 activities and 5 resources is less than 5%. Consequently,
the results confirm the reliability of the proposed self-adap-
tive GA in tackling the RIP/max problems with a mean of
RDP1 less than 3% in all 674 benchmarks.
4.2 Comparison Results for RIPDCF/max

This section is classified to two parts. At first, the pro-
posed GA is compared with four metaheuristics including
two previous GAs, [14] and [30], suggested for RIPDCF/max,
a simulated annealing (SA), and a scatter search (SS) algo-
rithm designed in this research. Then, it is compared with
near exact solutions found by the LINGO software.

algorithm solution

 SEPTEMBER – DECEMBER 2016 | THE JOURNAL OF MODERN PROJECT MANAGEMENT A 7372 B THE JOURNAL OF MODERN PROJECT MANAGEMENT | SEPTEMBER – DECEMBER 2016

SELF ADAPTIVE MECHANISM /// A TWO-PART SELF-ADAPTIVE TECHNIQUE IN GENETIC ALGORITHMS FOR PROJECT SCHEDULING ...
[18] J. Holland, Adaptation in Natural and Artifi cial Systems. Uni-

versity of Michigan Press, Boston, 1975.
[19] H. P. Schwefel, Numerical Optimization of Computer Models.

John Wiley & Sons, New York, 1981.
[20] K. A. De Jong and W. M. Spears, “An analysis of the in-

teracting roles of population size and crossover in genetic
algorithms,” in Proceeding of the fi rst Workshop on Parallel
Problems Solving from Nature, H. P. Schwefel and R Manner
Eds. Springer-Verlag, London, 1990, pp 38-47.

[21] T. P. Bagchi, and K. Deb, “Calibration of GA parameters: the
design of experiments approach,” Computer Science and
Informatics. vol. 26, pp. 45-56, 1996.

[22] A. W. M. Ng, and B. J. C. Perera, “Selection of genetic algo-
rithm operators for river water quality model calibration,”
Eng. Appl. Artif. Intell. vol. 16, pp. 529–541, 2003.

[23] A. Czarn, C. MacNish, K. Vijayan, B. A. Turlach, and R.
Gupta, “Statistical exploratory analysis of genetic algo-
rithms,” IEEE T. Evolut. Comput. vol. 8, pp. 405–421, 2004.

[24] C. B. Costa, M. M. R. Wolf, and F. R. Maciel, “Factorial
design technique applied to genetic algorithm parameters in
a batch cooling crystallization optimization,” Comput. Chem.
Eng. vol. 29, pp. 2229–2241, 2005.

[25] B. Adenso-Diaz, and M. Laguna, “Fine-tuning of algorithms
using fractional experimental designs and local Search,”
Oper. Res. vol. 54, pp. 99-114, 2006.

[26] R. Ruiz, and C. Maroto, “A genetic algorithm for hybrid
fl owshops with sequence dependent setup times and machine
eligibility,” Euro. J. Oper. Res. vol. 169, pp. 781-800, 2006.

[27] R. Ruiz, C. Maroto, and J. Alcaraz, “Two new robust genetic
algorithms for the fl owshop scheduling problem,” Omega. vol.
34, pp. 461-476, 2006.

[28] C. B. Costa, E. A. Ccopa-Rivera, M. C. A. F. Rezende, M. M.
R. Wolf, and F. R. Maciel “Prior detection of genetic algo-
rithm signifi cant parameters: coupling factorial design tech-
nique to genetic algorithm,” Chemical Engineering Science.
vol. 62, pp. 4780-4801, 2007.

[29] F. G. Lobo, C. F. Lima, and Z. Michalewicz, Parameter
Setting in Evolutionary Algorithms. Springer Velarg, Berlin,
2007.

[30] M. Shahsavar, A. A. Najafi , and S. T. A. Niaki, “Statistical
design of genetic algorithms for combinatorial optimi-
zation problems,” Math. Probl. Eng. vol. 2011(2), pp. 1-17,
doi:10.1155/2011/872415.

[31] A. E. Eiben, R. Hinterding, and Z. Michalewicz “Parameter
control in evolutionary algorithms,” IEEE T. Evolut. Comput.
vol. 3, pp. 124–141, 1999.

[32] T. Back, “Optimal mutation rates in genetic search,” in
Proceedings of the Fifth International Conference on Genetic
Algorithms, S. Forrest, Ed. San Mateo, CA, Morgan Kauf-
mann, 1993, pp. 2-8.

[33] B. A. Julstrom, “What have you done for me lately? adapting
operator probabilities in a steady-state genetic algorithm,” in
Proceedings of the Sixth International Conference on Genetic
Algorithms, L. Eshleman Ed. San Mateo, CA, Morgan Kauf-
mann, 1995, pp. 81-87.

[34] W. M. Spears, “Adapting crossover in evolutionary algo-
rithms,” in Evolutionary Programming IV. Proceedings of the
Fourth Annual Conference on Evolutionary Programming, J.
Mcdonnell, R. Reynolds, D. Fogel, Eds. MIT Press, Cambridge,
MA, 1995, pp 367-84.

[35] J. Lis, “Parallel genetic algorithm with the dynamic control pa-
rameter,” in Proceedings of IEEE International Conference on
Evolutionary Computation. Nagoya, Japan, 1996, pp 324–329.

[36] J. J. Grefenstette, “Optimization of control parameters for
genetic algorithms,” IEEE Trans. Syst. Man. Cybern. vol. 16,
pp. 122-128, 1986.

[37] Q. T. Pham, “Competitive evolution: a natural approach to
operator selection,” in Progress in Evolutionary Computation.
Lecture Notes in Artifi cial Intelligence, X. Yao Ed. Spring-
er-Verlag, Heidelberg, 1995, pp 49-60.

[38] C. Chunlei and F. Yanjun, “An adaptive mutation method
for GA based on relative importance’” in Proceedings of the
2010 3rd International Conference on Advanced Computer
Th eory and Engineering (ICACTE). Chengdu, China, 2010, pp.
111-113.

[39] G. Chen, “Intelligent adaptive genetic algorithm and its appli-
cation,” in Proceedings of the 2011 International Conference
on Intelligent Computation Technology and Automation
(ICICTA). 2011, pp. 163-166.

[40] C. Jassadapakorn, and P. Chongstitvatana, “Self-adaption
mechanism to control the diversity of the population in ge-
netic algorithms,” International Journal of Computer Science
& Information Technology. vol. 3(4), pp. 111-127, 2011.

[41] B. Tessema and G. G. Yen, “A self adaptive penalty function
based algorithm for constrained optimization,” in Evolu-
tionary Computation, 2006. CEC 2006. IEEE Congress on ,
Vancouver, BC , 2006, pp. 246 – 253.

[42] R. Perzina, and J. Ramik, “Timetabling problem with fuzzy
constraints: a self-learning genetic algorithm,” International
Journal of Engineering and Innovative Technology. vol. 3(4),
pp. 105-113, 2013.

[43] R. Perzina, and J. Ramik, “Self-learning genetic algorithm
for timetabling problem with fuzzy constraints,” Internation-
al Journal of Innovative Computing, Information and Control.
vol. 9(11), pp. 1349-4198, 2013.

[44] A. F. Ali, “Genetic local search algorithm with self-adaptive
population resizing for solving global optimization problems.
I.J. Information Engineering and Electronic Business. vol. 3,
pp. 51-63, 2014.

[45] F. Espinoza, B. S. Minsker, and D. Goldberg, “An adaptive
hybrid genetic algorithm for groundwater remediation design.
J. Water Resour. Plann. Manage. vol. 131(1), pp. 14–24, 2005.

[46] F. Espinoza, and B. S. Minsker, “Development of
the enhanced self-adaptive hybrid genetic algorithm
(e-SAHGA),” Water Resourc. Res. vol. 42(8), 2006,
doi:10.1029/2005WR004221.

[47] T. E. Mihoub, L. Nolle, G. Schaefer, T. Nakashima, and
A. Hopgood, “A self-adaptive hybrid genetic algorithm for
color clustering,” in 2006 IEEE International Conference on
Systems, Man, and Cybernetics, Taipei, Taiwan, 2006, pp.
3158-3163.

[48] T. Lili, K. Xiangdong, Z. Weimin, and Q. Feng, “Modifi ed
self-adaptive immune genetic algorithm for optimization
of combustion side reaction of p-Xylene oxidation. Chin. J.
Chem. Eng. vol. 20(6), pp. 1047-1052, 2012.

[49] Y. Liu, Y. Feng, and P. Gilmore Pontius Jr, “Spatially-explicit
simulation of urban growth through self-adaptive genetic
algorithm and cellular automata modeling,” Land. vol. 3, pp.
719-738, 2014.

[50] R. Zamani, “A polarized adaptive schedule generation scheme
for the resource-constrained project scheduling problem,”
RAIRO - Operations Research. vol. 46 (1), pp. 23-39, 2012.

[51] J. L. Ponz-Tienda, V. Yepes, E. Pellicer, and J. More-
no-Flores, “Th e Resource Leveling Problem with multiple re-
sources using an adaptive genetic algorithm,” Autom. Constr.
vol. 29, pp. 161–172, 2013.

[52] R. H. Möhring, “Minimizing costs of resource requirements
in project networks subject to a fi x completion time,” Oper.
Res. vol. 32, pp. 89-120, 1984.

[53] K. Neumann, and J. Zimmermann, “Procedures for resource
leveling and net present value problems in project schedul-
ing with general temporal and resource constraints,” Euro. J.
Oper. Res. vol. 127, pp. 425-443, 2000

re
fe

re
nc

es
re

fe
re

nc
es

[1] L. Demeulemeester, and W. Herrolen, Project
Scheduling a Research Handbook. Kluwer
Academic Publishers, Boston/Dordrecht/London,
2002.

[2] Kolisch, and S. Hartmann, “Experimental inves-
tigation of heuristics for resource-constrained
project scheduling: an update,” Euro. J. Oper. Res.
vol. 174, pp. 23-37, 2006.

[3] Chan, D. K. H. Chua, and G. Kannan, “Construc-
tion resource scheduling with genetic algorithms,”
J. Const. Eng. Manage. vol. 122, pp. 125–132,
1996.

[4] Hartmann, “A competitive genetic algorithm for
resource-constrained project scheduling,” Nav.
Res. Log. vol. 45, pp. 733–750, 1998.

[5] Hegazy, “Optimization of resource allocation and
leveling using genetic algorithms,” J. Const. Eng.
Manage. vol. 125, pp. 167-175, 1999.

[6] Alcaraz, and C. Maroto, “A robust genetic algo-
rithm for resource allocation in project schedul-
ing,” Ann. Oper. Res. vol. 102, pp. 83–109, 2001.

[7] Hartmann, “A self-adapting genetic algorithm for
project scheduling under resource constraints,”
Nav. Res. Log. vol. 49, pp. 433–448, 2002.

[8] K. S. Hindi, H. Yang, and K. Fleszar, “An evo-
lutionary algorithm for resource-constrained
project scheduling,” IEEE T. Evolut. Comput. vol.
6, pp. 512–518, 2002.

[9] Y. C. Toklu, “Application of genetic algorithms to
construction scheduling with or without resource
constraints,” Can. J. Civ. Eng. vol. 29, pp. 421–
429, 2002.

[10] A. Senouci, and N. Eldin, “Use of genetic algo-
rithms in resource scheduling of construction

projects,” J. Const. Eng. Manage. vol. 130, pp.
869-877, 2004.

[11] A. A. Najafi , and S. T. A. Niaki, “A genetic al-
gorithm for resource investment problem with
discounted cash fl ows,” Appl. Math. Comput. vol.
183, pp. 1057–70, 2006.

[12] S. Shadrokh, and F. Kianfar, “A genetic algorithm
for resource investment project scheduling prob-
lem, tardiness permitted with penalty,” Euro. J.
Oper. Res. vol. 181, pp. 86–101, 2007.

[13] J. Mendes, J. Goncalves, and M. Resende, “A
random key based genetic algorithm for the re-
source–constrained project scheduling problem,”
Comput. Oper. Res. vol. 36, pp. 92-109, 2009.

[14] A. A. Najafi , S. T. A. Niaki, and M. Shahsavar, “A
parameter-tuned genetic algorithm for resource
investment problem with discounted cash fl ows
and generalized precedence relations,” Comput.
Oper. Res. vol. 36, pp. 2994-3001, 2009.

[15] M. Shahsavar, S. T. A. Niaki, and A. A. Najafi ,
“An effi cient genetic algorithm to maximize net
present value of project payments under infl ation
and bonus-penalty policy in resource investment
problem,” Adv. Eng. Softw. vol. 41, pp. 1023-1030,
2010.

[16] B. Afshar-Nadjafi , and M. Arani, “Multimode
preemptive resource investment problem sub-
ject to due dates for activities: formulation and
solution procedure,” Advances in Operations
Research. 2014, doi:10.1155/2014/740670.

[17] M. Arjmand, and A. A. Najafi , “Solving a multi-
mode biobjective resource investment problem
using metaheuristic algorithms,” Advanced Com-
putational Techniques in Electromagnetics. vol.
2015(1), pp. 41-58.

authors

r Amir Abbas Najafi received his B.S. degree in In-
dustrial Engineering from Isfahan University of Technol-
ogy in 1996, and his M.S. and Ph.D. degrees in Industrial
Engineering from Sharif University of Technology in
1998 and 2005, respectively. He is currently an associate

professor at K.N. Toosi University of Technology. His research inter-
ests include Applied Operations Research, Project Scheduling and
Management and Portfolio Selection Models

r Aria Shahsavar received his B.S. degree (2005)

and M.S. degree (2008) both in Industrial Engineering

from Islamic Azad University in Iran. He worked as an

industrial engineer in car manufacturing industries

from 2006 to 2009. Since then, he has been working in

ship building industries as project planner and project manager. His

research interests are Applied Operations Research, Project Schedul-

ing and Management, and Metaheuristic algorithms.

r Seyed Taghi Akhavan Niaki is Professor of In-

dustrial Engineering at Sharif University of Technol-

ogy. His research interests are in the areas of Quality

Engineering, Simulation Modeling and Analysis, Applied

Statistics, and Operations Research. Before joining

Sharif University of Technology, he worked as a systems engineer

and quality control manager for Iranian Electric Meters Company. He

received his Bachelor of Science in Industrial Engineering from Sharif

University of Technology in 1979, his Master’s and his Ph.D. degrees

both in Industrial Engineering from West Virginia University in 1989

and 1992, respectively. He is the Co-Chief-Editor-In-Chief of Scientia

Iranica, the Editor of Scinetia Iranica Transactions E, the Acting Editor

of Scientifi c and Research Journal of Sharif, a board member to sever-

al international journals, and a member of �ϖµ.

