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SELF ADAPTIVE MECHANISM

r   A B S T R A C T 

The present paper introduces a novel two-part self-adaptive technique in designing 

the genetic algorithm for project scheduling problems. One part of the algorithm 

includes a self-adaptive mechanism for genetic operators like crossover and mutation. 

The second part contains another self-adaptive mechanism for genetic parameters 

such as crossover probability. The parts come in turn repeatedly within a loop feeding 

each other with the information regarding the performance of operators or param-

eters. The capability of the method is tested and confi rmed in comparison to meta-

heuristic and exact algorithms based on well-known benchmarks.
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A TWO-PART 
SELF-ADAPTIVE 
TECHNIQUE IN 
GENETIC ALGORITHMS
for Project Scheduling Problems

Probability. As diff erent alternatives 
for each component (operator and 
parameter) of GA is available in the 
literature, GA practitioners always face 
two questions. Which alternative of 
genetic operators should be chosen and 
on what level each parameter should be 
set to guarantee good results? 

Many eff orts have been put for-
warded to answer the above questions. 
Th ese eff orts can be classifi ed to pa-
rameter tuning and parameter control. 
Parameter tuning approaches seek a 
proper combination of alternatives for 
components of GA based on an analy-
sis of results reported by the GA tested 
on a set of problems representative for 
the problem instances. Noticeably, the 
components are known before running 
the GA and remain constant during the 
run [7]. Of diff erent parameter tuning 
approaches, the statistical methods are 
more favorable. For a review, please see 
[19] - [30]. According to [7], although 
parameter tuning is suitable for a large 
number of situations, it may not lead to 
the best possible GA because the test 
problems not only are heterogeneous 
but also cannot be actually viewed as 
the representative for the real-world 
situations. In addition, due to the 
nature of some components that may 
perform well in early generations and 
some others that act better in later 
generations, parameter tuning may not 
work well. Th erefore, the parameter 
control comes into picture as an alter-
native case in which the components 
are not fi xed during the run of GA 
and the best combination is detect-
ed throughout the search. Th is case 
requires initial parameter values and 
suitable control strategies. References 
[29] and [31] classifi ed the parameter 
control procedures into three classes 
of deterministic [32], adaptive [33], 
and self-adaptive. Th e third class, the 
self-adaptive parameter control proce-
dure, encodes the components within 
each solution of the GA and discovers 
the best ones via a feedback-based con-

trol strategy. Reference [34] introduced 
an interesting self-adaptive mechanism 
for crossover operator in which one bit 
is appended to the end of each solution 
to show which alternative of the oper-
ator has created the solution. Th e bit 
helps the GA choose better alternatives 
with regard to their corresponding 
fi tness. When, for example crossover 
operator, is to be performed, this bit 
signals the algorithm to employ the 
most adapted alternative for crossover. 
In doing so, the related bits of all the 
solutions are evaluated and the alter-
native with more repetition is known 
as the most adapted one. Reference [35] 
showed a mechanism to adapt the mu-
tation probability in a model of parallel 
GA. Reference [36] includes two levels 
of GAs. While the meta-level evolves 
a population of parameters, the basic 
level operates on the best set of param-
eters obtained by the meta-level. Ref-
erence [37] introduced an approach for 
selecting parameters by establishing a 
competition among several subpopu-
lations, where each subpopulation uses 
diff erent sets of parameters. Th e addi-
tional processing time is given to the 
populations with better parameter sets. 
Some of the other adaptive GAs such as 
[38] - [40] are to adaptively control the 
diversity of population. Owing to the 
effi  ciency of self-adaptive techniques 
in the GA, they have been continually 
used over years in the literature (please 
see [41] - [49]). 

Despite a multitude of GA-based 
eff orts done on PSPs, a few of them 
have considered self-adapting GAs. 
Some of these works are [7], [50] and 
[51]. Besides, most of self-adaptive GAs 
suggested for PSPs have focused only 
on one or a few characteristics of the 
GA to design an eff ective algorithm, 
whereas the GA has many components 
that impress its eff ectiveness and need 
more comprehensive attention. A ro-
bust GA cannot be devised unless best 
alternatives of genetic operators and 
parameters are revealed through a pro-

cess examining diff erent combinations 
of alternatives. Nevertheless, there has 
been less attention so far in designing 
the GAs for PSPs that utilize param-
eter control techniques, especially for 
the situation in which selecting good 
operators as well as setting good values 
to the parameters is desired simulta-
neously. In this paper, we introduce a 
more comprehensive method in which 
most of the vital elements impressing 
the performance of the GA are fi rst 
designed. Th en, a two-part self-adap-
tive GA in which one part relates to 
the adaption of operators and the 
other part attributes to the adaption of 
parameters is applied to bring a more 
thorough approach about.

Th e paper is structured as follows: 
Section 2 describes the proposed meth-
odology for the PSPs. Section 3 inves-
tigates the application of the method-
ology on two diff erent PSP problems. 
Section 4 gives the computational 
results of the proposed methodology 
in comparison to other metaheuristics 
as well as exact procedures. Finally, 
the conclusion of the paper comes in 
Section 5.

2. The proposed
methodology

Th e present study addresses a new 
method that combines previously-de-
vised parameter control techniques 
to tackle the PSPs. Th e proposed GA 
consists of two parts coming in turn 
repeatedly within a loop and providing 
input data for each other. One part 
(OAP: operator-adapting part) concen-
trates on genetic operators and uses a 
self-adapting mechanism to gradually 
detect the best alternative for each op-
erator. Th is self-adapting mechanism 
actually acts like a feedback system 
that records and returns the fi tness of 
alternatives when implemented on a 
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1. Introduction
Th e project scheduling prob-

lems (PSP) seek the most favorable 
schedule for a set of activities linked 
together with precedence relations 
in such a way that one or some goals 
are achieved while no violation of 
resource limits occurs [1]. Generally, 
network diagrams with activities 
and precedence relations represent-
ed by nodes and arcs are utilized 
to depict PSPs. Th e PSPs involve a 
wide variety of models, of which 
1) resource-constrained project 

scheduling problem, 2) resource in-
vestment problem, and 3) resource 
leveling problem are known as the 
basic models upon which other 
models are created. According to 
[2], PSPs are of the most demanding 
problems in operations research for 
which a large number of heuristics 
have been proposed. Among a mul-
titude of heuristics applied on PSPs, 
the genetic algorithms (GA) have 
been one of the most successful and 
favorable methods. For a review of 
GAs devised for these general class-
es of PSPs, one can refer to [3] - [17].

Th e GA inspires its soul by 
natural selection and survival of 

the fi ttest [18]. Th e algorithm goes 
through a population of solutions 
and evolves stepwise by joining the 
features of solutions. In each step, 
the current solutions are selected 
as parents to be recombined and 
mutated in hopes of discovering 
children with superior character-
istics. Such operations generally 
are conducted by means of genetic 
operators such as Parent Selec-
tion, Crossover, and Mutation. To 
maintain the randomness of the 
search, the operators are carried out 
probabilistically during the GA by 
some random parameters such as 
Crossover Probability and Mutation 
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population of basic problem solutions. 
Then in the later generations, high 
quality alternatives are given more op-
portunity to be implemented. The other 
part (PAP: parameter-adapting part) 
focuses on parameters and functions 
in such a way that discovers the best 
levels of parameters leading to better 
performances. Similarly, this part has a 
self-adapting mechanism that feeds the 
reports of parameter effects back to the 
algorithm.
2.1 Initialization of 
the proposed GA 

At the advent of this GA, a popula-
tion of the basic problem solutions (P1) 
for the PSP, and a population of proba-
bilistic parameter sets (P2) is randomly 
produced. Both populations are equal 
in size and each solution of P2 contains 
a different set of parameters which 
contributes to one specific solution of 
P1. Besides, different alternatives are 
devised for genetic operators and are 
given the same opportunity to be im-
plemented in the first step of algorithm. 
2.2 Adaption rate calculations

The adaption rate means the op-
portunity given to each alternative or 
parameter value to be employed and 
changes within the algorithm based 
on the influence they have had on the 
evolution of GA. The adaption rate of 
an alternative is calculated based on the 
fitness of the solutions created by that 
alternative. Moreover, the adaption rate 
of each parameter set is also calculated 
based on the fitness of the solutions 
created by that set. 
2.3 Fixing the alternatives 
and parameters 

In order to eliminate the effects of 
parameters on the function of opera-
tors and vice versa, the OAP is executed 
in the presence of fixed parameters and 
the PAP is performed in the presence of 
constant operators. The parameters fed 
to OAP and operators fed to PAP are 
fixed by the following way. The value of 
parameter i is set to the average of all 
values of that parameter through the 
entire P2. In addition, one alternative 
for each operator is fixed probabilisti-
cally based on the adaption rates of al-

ternatives. Actually for each alternative, 
the higher the adaption rate, the higher 
the chance of being fixed. 
2.4 Operator-adapting part (OAP)

In the OAP, the approach suggested 
in [34] that appends a bit to the end 
of every solution for each operator is 
used. For instance, suppose an extra 
bit is added to the end of solution for 
crossover operator and let “0” refers 
to one-point crossover and “1” refers 
to uniform crossover. If the one-point 
crossover can create better solutions, 
then more “0” is appeared in the crosso-
ver-related bit during the evolution of 
GA. Note that, a mechanism that gives 
greater rewards to better alternatives is 
needed. For this purpose, imagine A1% 
of the extra crossover-related column 
of the population contains “0” and A2% 
contains “1”. Let f and f  be the mean 
fitness of A% and A% of the popula-
tion, respectively. Then, the adaption 
rate of the crossover alternative i is 

calculated as . When recom-
bining, either the one-point alternative 
with probability of F or uniform alter-
native with probability of F is selected. 
Therefore, if the one-point crossover 
performs better during the algorithm 
process, the higher F is anticipated. 
After recombination, if the one-point 
crossover was the processor, the cor-
responding bit would change to “0” if 
necessary. As the algorithm evolves, 
better alternatives create bigger part of 
the population and their adaption rates 
increase. 

After some generations, the OAP 
stops and introduces the more adapted 
alternatives with higher adaption rates. 
Note again that, the parameter values 
are constant during all generations of 
OAP. 
2.5 Parameter-adapting part (PAP)

The PAP acts similar to [36], in 
which two levels of genetic algorithms 
are considered. The meta-level evolves a 
population of parameter sets (P), while 
the basic-level operates on the problem 
solution population (P). In the me-
ta-level of GA, a solution is represented 
by characteristics of parameters. For 

example, when the crossover proba-
bility and mutation probability are the 
subject of PAP, a vector with two cells; 
each including a real value for either of 
crossover or mutation probabilities is 
devised. The meta-level GA possesses 
its own characteristics and operators 
to operate on P in pursuit of the best 
possible values of parameters. A ques-
tion that may arise here is that how the 
fitness of parameter sets is evaluated. 
As mentioned before, each solution in 
the meta-level of GA is contributed to 
a specific solution in the basic-level of 
GA. Therefore, when a generation of 
P is produced, a run of the basic GA 
is also conducted. In running the basic 
GA, the constant adaptive operators in-
troduced by OAP is used together with 
the different parameter sets of P. Since 
the operators are constant and param-
eters are different, different results of 
the basic-level can be strongly referred 
to the effects of parameters. As a result, 
the fitness of each solution in the ba-
sic-level is considered as the fitness of 
its corresponding parameter set. Next, 
relying on the known fitness of param-
eter sets, another generation of me-
ta-level GA is produced and its fitness 
is calculated by running the basic GA 
accordingly. The process proceeds for a 
few numbers of generations. Finally, the 
parameters adapted on proper sets are 
fed to the OAP. 
2.6 The general scheme 
of the proposed GA

The algorithm starts with OAP 
focusing only on the adaption of 
potential alternatives for operators. 
The OAP repeats its contents giving 
greater rewards to well-performed 
alternatives to produce some genera-
tions while recording the adaption rates 
of alternatives. Then the alternatives 
with higher adaption rates are intro-
duced to the PAP. The PAP informed 
of adapted alternatives proceeds for a 
specific number of generations while 
recording the adaption rates of param-
eters. Finally, the PAP transmits the 
adapted parameters to the OAP. Now 
one loop finishes and the other starts. 
This process proceeds until the stop-
ping criterion of the algorithm is met. 
The pseudo-code of the proposed GA 

is shown in Figure 1 wherein N is an even positive integer that 
specifies the number of generations produced within both 
parts of the algorithm. In addition,  shows the number 
of loops needed to terminate the algorithm.

Since operators have much fewer alternatives than pa-
rameters whose alternatives are selected within a continuous 
range, the algorithm needs more efforts in order to find the 
adapted values of the parameters. Therefore, in this GA the 
more loops are run, the more generations are assigned to 
self-adapting mechanism of parameters. 

The flowchart of the proposed GA is also shown in Figure 2.
A striking point regarding the proposed method is that, 

it is applicable to any branch of PSPs because of its compat-
ibility with any type of the solution representations known 
in the literature for the PSPs. Typically, the most prevalent 
representation styles used in PSPs can be classified into three 
types; first, an activity list representation [6], second, the 
random key representation [13], and third, the real schedule 
representation such as a vector of starting times [9]. Add-
ing the extra bits to solutions employed in OAP and using 
a sequential GA like the one employed in the PAP are both 
possible in all of these solution representation kinds. There-
fore, the method can be applied on every branch of PSPs.

3. Application of the methodology on PSP
The resource investment problem (RIP) and its extensions 
are a class of PSPs in which the resource availabilities are 
considered as decision variables of the model. In the following 
sub-sections, the proposed methodology is firstly applied on 
the basic RIP and then is applied on the RIP with discounted 
cash flows (RIPDCF) to provide more reliable results. 

3.1 Application on RIP

The basic RIP aims at minimizing the renewable re-
source costs of the project [52]. Suppose a project in an AON 
network G=(E,V) in which V shows activities and E shows 

the precedence relations of activities. The project has n+1 
activities where two dummy activities 0 and n represent the 
starting and finishing points of the project, respectively. The 
generalized precedence relations with minimal and maxi-
mal time lags link activities together where lij is the time lag 
between the starting times of activities i and  j,   (i,j)  G. The 
RIP with generalized precedence relations is referred to RIP/
max. Each activity i has a fixed duration di and requires rik 
units of resource k, k=1, 2, ... , K to be executed. Employing 
each unit of resource k imposes a cost  CK on the project. In 
addition, the project has to be finished before deadline T. The 
objective of the model is finding a schedule for activities and 
a level of employment for resources so that the total costs 
of the project resources are minimized. The RIP/max (RIP 
under generalized precedence relations with minimal and 
maximal time lags between activities) can be formulated in 
the following way.

In this formulation, xit is a zero-one variable where xit = 1 
if the activity i starts at time period t, otherwise xit = 0. Rk is a 
positive variable showing the employment level of resource k. 
The objective function (1) minimizes the resource costs of the 

FIGURE 1:  The pseudo-code of the proposed GA
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To utilize the proposed methodology on the RIP/max, 
we borrow the solution representation of [30]. The solution 
is a vector including 1+n  cells ( 1+n shows the number of 
project activities) such that the value of cell i indicates the 
starting time of activity i. In order to create a solution, the 
activities are selected randomly and their starting times 
are produced among their earliest and latest starting times 
at random. After determining the starting time of each 
activity, the earliest and latest starting times of its prede-
cessors and successors are updated to prevent the solution 
from being infeasible. In [30], different alternatives for 
Parent Selection, Crossover, and Mutation operators have 
also been designed. The alternatives designed in [30] are 
employed here to be the subject of the present self-adap-
tive GA. The description of designed alternatives for each 
component in [30] is as follows.

The tournament selection, which is a fitness-based 
parent selection, and the unlike selection that is not a 
fitness-based parent selection have been devised as parent 
selection alternatives. The one-point crossover and uni-
form crossover are the designed alternatives for recom-
bination. In one-point crossover, two parents are cut in 
a middle point of the vector. The first part of the child is 
filled directly by cells of the left part of the first parent and 
the right part is filled by the use of the cells of the right 
part of the second parent as follows. At first, the earliest 
and latest starting times of activities with empty cells are 
updated based on the starting times of the left activities. 
Then for each cell i, if the value of the corresponding cell 
of the second parent is positioned between the updated ESi 
and LSi, it is fixed in the child, if it is smaller than the up-
dated ESi, the cell value is set to ESi, otherwise it is set to 
LSi. In uniform crossover, the starting time of each activity 
of child is chosen randomly among its corresponding cell 
of one parent. Notice that, when a cell value is fixed, the 
value of its successors and predecessors may be shifted 
forward or backward to prevent the child from being 
infeasible. In terms of mutation, two strategies are applied. 
In the first mutation strategy, a mutation probability is 
assigned to each child and then, either all or none of the 
cells of that child are mutated. In the second strategy, a 
mutation probability is assigned to each cell and then, that 
cell is mutated independent of others. In order to mutate 
one cell or one activity, its starting time is replaced with 
new value generated randomly among its corresponding 
earliest and latest starting time. Then, the starting times of 
its successors and predecessors are updated for guarantee-
ing the feasibility. 

For the PAP, we choose crossover probability and mu-
tation probability as the subject of self-adaption. Then, we 
design a two-cell vector in which cell 1 relates to the cross-
over probability and cell 2 relates to the mutation prob-
ability. The cell 1 is randomly valued from the intervals 
[0.6,1] and cell 2 within [0,0.3]. The self-adaptive mecha-
nisms for both operators and parameters are described as 
follows. TABLE 1: Comparison results with exact solutions of RIP/max

Group No. of 
activities

No. of bench-
marks

No. of 
resources

Average. of 
RDP1%

J10 10 90 1 0

90 3 0.1

90 5 0.5

J20 20 90 1 1.1

90 3 1.8

90 5 2

J30 30 90 1 1.5

90 3 2.5

90 5 4.4

a) OAP for RIP/max 

We appended 3 bits at the end of each solution to show 
different alternatives of three operators i.e. parent selection, 
crossover, and mutation operator. The alternatives intro-
duced before for each operator are given equal adaption rates 
in the first OAP. The GA is initialized according to Section 
2.1 and then the OAP starts. During the OAP, the param-
eters fed by the PAP are fixed and the parents are selected 
by either tournament or unlike selection regarding to their 
adaption rates. They are then recombined by either one-
point or uniform crossover and continue with the mutation. 
The adaptive mechanism relies on the fitness of solutions. 
The best objective function found during the whole run of 
GA is maintained. The fitness value of each solution is calcu-
lated based on division of the best objective function found 
to the objective function of that solution. Accordingly, the 
adaption rate of alternatives is computed via (7).

   
(7)

In (7), Ni is the number of alternatives of operator i and 
f(j,i) is the mean fitness of the solutions created by the jth al-
ternative of operator i in the entire of population. Then, F(j,i)
calculates the adaption rate of the jth alternative of operator i. 
It means that when one operator like i is on function, its jth 

alternative is utilized with the probability of F(j,i). This part 
terminates when a specific number of generations are creat-
ed and then reports the adapted alternatives to the PAP.
b) PAP for RIP/max

In the PAP, the previously described two-level GA is 
applied. In the meta-level of GA, a solution in P2 is a vector 
with two cells for crossover and mutation probabilities. 
The meta-level of GA selects solutions in P2 by tournament 
selection and recombines them by uniform crossover in 
which each cell of parents has an equal chance to be present 
in the child. For mutation, a cell value of a child is randomly 
replaced by another random value drawn between its corre-
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FIGURA 2: The general framework of the proposed algorithm

project. Constraint (2) forces every activity i to be started 
only once between its earliest and latest starting time, ESi 
and LSi  respectively. Constraint (3) states that the project 
should be finished before deadline T. Constraint (4) shows 

generalized precedence relations. Constraint (5) shows 
resource constraints. Constraint (6) introduces the domain 
of variables.
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sponding range. The fitness of solutions in P2 is calculated by 
running the basic level of GA wherein operators come from 
adapted ones in the OAP and parameters from P2. After 
running the basic GA, the fitness of solutions in new P1 is 
set to the corresponding solutions in P2. Now, an iteration of 
the meta-level GA terminates and another one starts. By this 
way, not only the superior parameter sets are discovered but 
also the quality of the basic problem population improves. 
This part terminates after a few generations and feeds the 
adapted parameters to the OAP. 
3.2 Application on RIPDCF

Reference [14] investigates the RIP in the presence of 
negative and positive cash flows with minimal and maximal 
time lags (RIPDCF/max) whose goal is to find a schedule as 
well as the employed levels of resources such that the net 
present value (NPV) of the project cash flows is maximized. 
The RIPDCF/max possesses some other characteristics 
in addition to those of the RIP/max. Some payments are 
received at some points of the project when a set of activities  
finishes. Furthermore, a cost including material and over-
head costs is imposed on the project based on each activity. 
The mathematical formulation of RIPDCF/max has been 
given in [14].

We use this problem as the second and more complicated 
case of project scheduling for testing our self-adaptive GA. 
The solution representation and the alternatives of operators 
designed for the RIP/max are all applicable in this situation 
too. The only exception is that, in [14] a local search oper-
ator is extended for the RIPDCF/max which is applied on 
each solution with a specific probability. Therefore, the local 
search probability is another option for parameters which 
must be considered in the PAP of the algorithm.
a) OAP for RIPDCF/max

The only difference between OAP for the RIP/max and 
RIPDCF/max regards to the fitness calculation of solutions. 
Since the RIPDCF/max is to maximize the NPV of the 
project, the fitness of each solution is calculated as its NPV 
divided to the maximum NPV found during the whole run 
of GA.

The SA and SS are devised in the 
following way. The solution representa-
tion for both algorithms is similar 
to what used in the adaptive GA. In 
the SA, a neighborhood is produced 
by either a one-unit right shift in the 
starting time of a randomly select-
ed activity or a one-unit left shift. In 
order to prevent the new child from 
being infeasible, after the right (left) 
shift, the starting time of its successors 
(predecessors) may be shifted forward 
or backward. In addition, the common 
cooling functions known as Ti = kTi  
is employed to decrease temperatures 
during the algorithm process where Ti 
shows the temperature of cooling pro-
cess in period i and k is a coefficient. 
As for the SS, the initial population is 
generated similar to the adaptive GA. 
The distance matrix used in the SS is 
defined in (9) in which d denotes the 
distance value, h1 and h2 denote two 
population members, Si shows the 
starting time of the activity i, i=0, 1, 
..., n.

 
(9)

For the solution combination, the 
uniform crossover designed for the 
adaptive GA is taken into account. 
When updating the reference sets, a 
new solution enters the reference set 
B1, the set with best solutions of the 
population, if either the solution has 
both a better objective function than 
the worst objective function appeared 
in B1 and a distance upon the threshold 
on the smallest distance to any mem-
ber of B1 or it has a better objective 
function only. In addition, a solution 
enters the reference set B2, the set with 
diverse solutions of the population, if 
its distance is greater than the smallest 
distance in B2.  
a) Comparison to metaheuristics

The benchmarks employed here 
includes 180 RIPDCF/max instanc-
es available in [14], 60 RIPDCF with 
simple finish to start precedence 
relations with zero time lags bench-
marks available in [14], and 60 RIPDCF 
benchmarks produced by PROGEN. 
Let the GA proposed in [14] be GA1, 

the GA introduced in [30] be GA2, and 
the present self-adaptive algorithm be 
GA3. Table 2 shows the comparison 
results of these five algorithms exper-
imented on 300 benchmarks. In Table 
2, E shows the type of benchmark 
examples where E1 stands for RIPDCF/
max and E2 for RIPDCF. In addition, 
#P, #A, and #R denotes the number of 
problems, activities, and resources, 
respectively. Comparisons are based on 
the relative deviation percentage shown 
in (10), in which the best NPV for each 
benchmark is the best found among all 
of five algorithms. 

 (10)

Table 2 reveals that the self-adaptive 
GA is able to discover better solutions 
than all of other tested algorithms 
disregard of the type, size, or com-
plexity of test problems. The deviation 
of the self-adaptive GA from the best 
points is approximately less than 1% 
in all levels of experimented problems 
while none of other algorithms were 
able find solutions with a deviation less 
than 1% except for the problems with 
10 activities which is very simple and 
easy to solve. Looking at the average 
deviation of GA2 (3%) and GA3 (1%), 
it is concluded that, the results of the 
present self-adaptive technique is even 
better than the well-known parameter 
tuning technique based on statistical 
analysis employed in GA2.
b) Comparison to near exact solutions

Although LINGO software may 
result in local optimal solutions for 
non-linear models like RIPDCF/max, 
its outcomes can be considered as near 
exact solutions useful for situations 
where no exact algorithm is available. 
According to [14], LINGO was only 
able to solve 115 out of 180 RIPDCF/
max test problems as presented in 
Table 3. We do a comparison based on 
these 115 test problems.  Shortly, Table 
3 shows that the results of the proposed 
GA and LINGO differ only 0.75% on 
average.

5. Conclusion 
The GA is a powerful metaheuris-

tic widely used to solve demanding 
PSPs. There are lots of alternatives for 
operators and parameters of GA which 
make GA practitioners confused how 
to choose the best ones. The self-adap-
tive parameter control is a common 
approach giving greater rewards to the 
better operators and parameters to 
participate more in the later process-
es of the GA. In this research, a new 
self-adaptive GA useful for PSPs was 
extended. The method has two parts 
coming after one another for several 
times during the search, providing 
input data for each other. One part is 
a self-adaptive mechanism to know 
the best operator combination. The 
other part is another self-adaptive 
mechanism to discover best values 
for parameters. The proposed GA was 
implemented on two class of PSPs 
namely the RIP/max and RIPDCF/
max. The results of the proposed GA 
compared with exact solutions availa-
ble in PSPLIB for the RIP/max showed 
a small deviation of 1.5%, on average. 
As for RIPDCF/max instances, the 
efficiency of method was measured 
by comparing with four other meta-
heuristics including two GAs available 
in the literature and two different 
metaheuristic algorithms (SS and SA) 
devised in this research. Comparisons 
showed that the proposed GA is far su-
perior to others. In addition, the results 
of the algorithm were only 0.75% devi-
ated from those of LINGO software in 
RIPDCF/max problems. Referring to all 
of these comparisons and evaluations, 
we conclude that the proposed GA is 1) 
more efficient than metaheuristic com-
petitors, 2) less-deviated from optimal 
procedures, and 3) truly applicable on 
all type of PSPs. 

For future research, the method 
can be applied on other combinatorial 
optimization problems.

TABLE 2. Metaheuristic-based comparison results

E Source #P #A #R Average of RDP2 (%)

GA1 GA2 SS SA GA3

E1 Ref. [14] 60 10 1,3,5 0 0 5 0 0

60 20 1,3,5 5 3 12 4 0

60 30 1,3,5 11 3 16 4 1

E2 Ref. [14] 30 30 3,4,5 5 1 11 2 1

30 60 3,4,5 7 4 17 5 1

E2 PROGEN 30 90 2,4 10 3 17 6 1

30 120 2,4 12 4 19 5 1

TABLE 3. Comparison to Lingo results

No. of Prob-
lems

No. of Activ-
ities

No. of Re-
sources

Ave. of RDP2 
(%)

60 10 1,3,5 0.09

39 20 1,3,5 0.83

16 30 1,3,5 1.32

b) PAP for RIPDCF/max 

Since there is a local search for the RIPDCF/max, the 
solution set of parameters has three cells for crossover, mu-
tation, and local search probability. The cells are randomly 
generated from [0.6,1], [0,0.3], and [0,0.3], respectively. The 
other processes of PAP for RIPDCF/max are completely 
similar to the same process for RIP/max.

4. Comparison and Analysis
4.1 Comparison Results for RIP/max

In the project scheduling problem library (PSPLIB), there 
are 810 RIP/max benchmarks solved by a branch and bound 
algorithm proposed in [53]. This branch and bound algo-
rithm have found optimal solutions for 674 out of 810 test 
problems.

All of these 674 test problems are considered to be solved 
by our self-adaptive GA. Table 1 shows the comparison 
results based on these benchmarks where RDP1 is calculated 
according to (8).

 (8)

It is witnessed that, the algorithm is able to solve J10 
group very well with an approximately zero deviation from 
the optimal solutions (0.2% on average). It is also observed 
that, the proposed GA still performs well with a deviation 
below 2% for J20 and below 3% for J30, on average. In addi-
tion, the deviation seen for the most complex problems with 
30 activities and 5 resources is less than 5%. Consequently, 
the results confirm the reliability of the proposed self-adap-
tive GA in tackling the RIP/max problems with a mean of 
RDP1 less than 3% in all 674 benchmarks. 
4.2 Comparison Results for RIPDCF/max

This section is classified to two parts. At first, the pro-
posed GA is compared with four metaheuristics including 
two previous GAs, [14] and [30], suggested for RIPDCF/max, 
a simulated annealing (SA), and a scatter search (SS) algo-
rithm designed in this research. Then, it is compared with 
near exact solutions found by the LINGO software. 
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