Keywords a White-collar Project Earned Value Cost Performance Index (CPI) Remaining Work
Index (RWI) Staffing to Schedule Index (StSI) Reduce Scope Index (RScl) Scope Creep Envelope
Project Schedule Management Staffing Management Rookie-Professional Up-to-speed Delay
-Undiscovered Rework Error Rate Systems Dynamics Project Delays System Model Rookie

EFFECTIVE
 CORRECTIVE ACTION:

The initial/envelope model for

MANAGING PROJECTS

\author{

- John M. Nevison
 New Leaf Project
 Management -
 Massachusetts/USA
 \section*{- Karim Chichakly, PhD

 Worcester Polytechnic

 Institute -}
 Massachusetts/USA
karimc@wpi.edu
}

©ABSTRACT

Two of the most important dynamics in planning for projects are the "rookie-professional" up-to-speed delay for new hires, and the "undiscovered-rework" feedback loop. A recent report (Nevison, 2015) used a project model that did not include the undiscoveredrework loop. This report adthases that shorcoming by using a cifferent project model hacexplen ches bo pressional First the initial system-dynamic model's project plan gets modified to run with a realistic set of fine modified to run with a realistic set of fine-tuned parameters and to produce a "best-case" project plan of acceptable tual-to-date" staffing pattern becomes the "planned-value-
to-date" staffing histogram for an "envelope" earned-value model. The envelope model sets its parameters to the best case model and then uses system pressures derived from wh-value metrics to "work the plan" two ways. . complete the project on time.
When extra, unforeseen wo
Whexta, unforeseen work is needed, the envelope mod detects the need for additional staff or reduced scope and correctly adjusts the project to complete the project on time.
Conclusion: The "envelope" model's rics prove completely adequate to manage the project successfully.

Introduction

While small corporate IT and R\&D projects are full of unexpected surprises, long-term high-tech projects awarded to private companies by the US state and federal governments are considerably more carefully planned al government are the planned-value-to-date the actual-to-date and the earned-value-to-date costs. For most white-collar proiects, the major costs are abor costs expressed in staff-hours or staff-months that can be converted to dollars. US federal contracting law requires that these earned-value progress measurements be reported each month and that any change that affects the planned-value-to-date (the project baseline) must be approved by the sponsoring government agency $[1]$.
The systems dynamics community has modeled the changeable, hard-to-plan IT and R\&D projects with two major performance dynamics: the undiscovered-rework feedback loop and the rookie-to-professional up-tospeed delay [2]
A recent report demonstrated that a "realistic-case" set of initial assumptions in a system dynamics project plan can be combined with a surrounding "envelope" of traditional earned-value metrics. The "envelope" metrics were able to respond with corrective staffing to the full range
Hower, that ariled to ins encounter [3]
it undiscovered-rework
ic case" initial model.
The present report addresses that omission by using a different initial model a white-collar project. The new model explicitly includes the undiscovered-re work feedback loop and the "rookie-professional" up-to-speed delay. It was constructed by different author [4]. The results show how an earned value "enve

Traditional Project

We will begin with a project manager's simple project plan as shown in Figure 1 . Our traditional manager used tools such as a Work Breakdown Structure, a Network Logic Diagram whi a critical path, and careflly delineated ald estimated to be about a staff-month of work, with a schedule that stretched ver 25 months. The cross training of the staff ensured that everyone could remain productively engaged at all times.

Most Likely Systems Dynamics

Project Model

The traditional plan was then expanded by an experienced system dynamics expert to create a realistic project plan that included several familiar ynamics seen in proiects and a reasonable initial set of values for the varia bles. Figure 2 shows the familiar casual loops of the realistic project plan.

Traditional project plan	
Work to do	100
1-month tasks	
Staff (constant)	4 people
Schedule to complete	25 months

FIGURE 1 Traditional Project Plan

The model included both a rookie-professional up-to-speed delay, which led to the experience dilution shown in loops R3 and R3A and an undiscov-ered-rework feedback loop, which led to compounding errors and additional undiscovered rework (loop R1). The realistic plan also assumed that schedule pressure affected error rate negatively (loop R2) and productivity positively, to the same degree (loop B2A). Additional assumptions in the model included that working overtime led to staff burnout and that slipping the schedule would result in imputed project costs. Specific parameters were as follows: normal error fraction: 15%; time to hire new staff: 4 months; time for rookies to come up to speed: 2.4 months; initial productivity of new staff: 50% of experienced staff; initial error rate of new staff: 200\% of experienced sta mputed cost of late projects: 10 person-months per month of delay.

FIGURE 2 . Causal Looo Diagram of Realistic Project Plan
Running the initial realistic system dynamics (SD) model helped make decisions for the "most likely" project plan. The system dynamics expert and the most likely decisions about the dynamics of their particular project. They decided that their most likely project plan would not engage in overtime (not shown) because, in their environment, it led to disruptive burnout. The team also decided that, realistically, schedule pressure could not be avoided when the project fell behind schedule. In this case, schedule pressure isdou-

[^0]ble-edged sword. It increases productivity, but also increases error fraction oo the same extent. However, because of the reinforcing errors on errors feedback (R1 in Figure 2), the effect of the increased error fraction is larger than the gain in productivity.
Figure 3 shows how the most likely systems-dynamics model dramatically changed the team's thinking about the traditional project plan. The project cost had risen 78 person-months from 100 to 178 , the schedule had extended 6 months from 25 to 31 . Clearly, a conference with all the stakeholders was
ppropriate before proceeding with the plan!

Most-likely system-dynamic (SD) project plan	
Vary the staffing with 2.4 month up-to-speed time	
Normal error rate of 0.15	
Errors on errors allowed	
Schedule pressure increases productivity	
No schedule slip	
No overtime (so no burnout)	
Work to do 100 tasks	178
Staff (starting)	4 peoplen-months (varies)
Schedule to complete	31 months

FIGURE 3 . Most-Likely Systems Dynamics Project Plan
The most likely initial plan varied staff as needed to meet more demands for work [See Fig. 4].

FIGURE 4 . Variable Staffing of Most-Likely Systems Dynamics Project Plan

Best CaseSystem Dynamics Initial Project Pan

The system dynamics expert, in consultation with the project manager and the project stakeholders, discussed the dynamic effects of the system's feedback loops on the project's scope, schedule, and cost. The sponsor gave permission to assign one more person to the staff, if necessary, but outlawed
the temporary, variable, and disruptive use of outside staff on the project. So the question was, "What did the most likely project look like when staffed with a constant level of 4 (or 5) people?"

4-person most-likely SD plan	
Constant staffing of 4	
Normal error rate of 0.15	
Schedule pressure increases productivity	
No schedule slip	
No overtime (so no burnout)	
Work to do 100 tasks	145 person-months
Staff (constant)	4 people
Schedule to complete	36 months
5-person most-likely SD plan	
Constant staffing of 5	
Normal error rate of 0.15	
Errors on errors allowed	
Schedule pressure increases productivity	
No schedule slip	
No overtime (so no burnout)	
Work to do 100 tasks	149 person-months
Staff (constant)	5 people
Schedule to complete	30 months

FIGURE 5.4-Person Plan Compared to 5-Person Plan

Figure 5 compares the project consequences of a 4 or 5 full-time person staff. Five people would be marginally more expensive but could complete the project sooner.
The two plans were similar, but after some discussion the stakeholders agreed on their "best-case" initial project plan that was the slightly more expensive (2.8%), but significantly faster (17%), 5 -person plan. The level-staffed, ase 5 -person plan appears in figure 6

二
FIGURE 6 . Variable Staffing of Most-Likely Systems Dynamics Project Plan
The Best-Case 5 -Person Initial Plan has the merit of providing sufficient staffing for the project to proceed smoothly and avoid the necessity of adding additional, unplanned-for staff. The best-case plan allows for enough staff to handle the many anticipated feedback effects, the 15% error rate, the error-on-errors effect, and the schedule pressure effect on productivity and and will not include any slipped schedule effects

TheEmeopepelan

The "envelope" model resembles the behavior of large government-sponsored projects subject to federal contracting law. The project is assumed to

FIGURE 7. The Causal Loop Diagram for the Envelope Model

FIGURE $\boldsymbol{8}$ Envelope Model Run With the Project Following the Plan

FIGURE 9 Envelope Model Stafing With the Project Following the Plan
be well-planned and capable of being continually monitored for performance. The envelope model calculates the standard earned-value ratios of Cost Performance Index (CPI) and Sched ule Performance Index (SPI), adds the Remaining Work Index RWI), and follows that by calculating new systems pressures deled Id (RSI) [51 Tiese
\qquad -
5. Details on these calculations are in: RWI and StSIN Nevison
(2003); RScl, Nevison (2014) derived proiect pressures. Nevison (2 (2)
 velope project are in Nevison (2015).
.Two Nevison articles (Project Manag
7. Two Nevison articles PProict Management Journal and PMNETwork
une 1994) examine entry-level learring along with the results of w whitecol lar professional survey on p projects.
delays and feedback on subsequent performance. Figure 7 shows the causal loop diagram updated slightly from the Nevison (2015) report.
By using the best-case initial SD model plan's "actual-to-date" results as the "plan o-date" figures for the envelope model's project plan, the envelope model incorporate all the lessons of the initial model into a smoother performance plan for the larger, envelope model.
Earlier published reports have illustrated how the envelope model plan parameters work together to respond with corrective staffing to projects that have discovered as much as 25% of their work was unforeseen in their best-case initial plan (!). This 25% or also scope creep over the ife of the project [6] also scope creep over the life of the project [6]
-person best-case SD Project Plan. The plan has adedisted plan to work well with our 5 -person best-case SD Project Plan. Ihe plan has adjustedits schedule to a realistic 30
months with a realistic 150 staf-months of effort that includes all the feedback lessons learned from the professional's dynamic modeling of the project.
The first test of the envelope model is to let the project work the plan and see how the project behaves when all goes according to plan, i.e., when there is absolutely no additional, unforeseen work. Figure 8 shows the answer in the familiar four lines that appear as two.
As expected, the envelope project's earned-value-to-date follows the planned value-to date, exceeds the project goal, and stops on the original schedule. The project finishes in 30 months with an actual cost of 23,974 staff-hours. (This is 99.9% $f 23,960$ staf gour goal set in the model) Because the gled for model
Becfin fed or the constant staff we observe no effects from any delays in

Envelope Model With Unforeseen Extra Work

What if, even after our efforts to include the dynamic lessons of past project in our Best-Case 5 -Person Plan, unforeseen work still occurs? If that happens the amount of actual work will be more than the planned work, our costs will increase, the pressure to hire additional staff will go up, and the mechanics of hiring will begin to occur with the known organizational delays. Will the response occur in time? Will the project finish on time? How much will the extra people cost? Will he original scope be achieved? Figure 10 shows what a huge systemic shock of 25% dditional unforeseen work does to the project.
nforesen work Even with all the delays in the feed to vary in order to respond to the unforeseen work. Even with all the delays in the feedback loops of cause and effect, the In Figure $\mathbf{1 0}$, the actual cost of the project is 33,181 staff-hours instead of the original goal of 23,960 staff-hours, a 38.5% increase. The cost increase exceeds the 25% work increase because of the extra costs involved in expanding the staff, such as:

- Working through organizational delays in finding the possible hires,
- Doing the unplanned work to thire additional staff,
- Learning time by the new hires get up-to-speed on the project, and
- Teaching time the professionals spend helping the new hires get up to speed [7]

The extra staffing is shown in Figure 11. Because of the necessary increase in staff, we can see how the unplanned-for rookies sign on and, only after they traverse an average 2.4-month up-to-speed delay, do they join the ranks of the "Pros." Also notice that as th project continues, the need for extra staff gradually declines.
Only two of the parameters that led to the 38.5% cost increase were present in th eters, time-to-teach cost rate and the labor-to-find cost, illustrate the imperfect match hetween the initial SD model and the envelope model. Figure 12 compares the importa variables between the two models.

 FIGURE 10 . Envelope Model Run Responding to 25\% Additional Unforeseen Work: Staffing
 Covers an Unforeseen 25\% Work Increase

FIGURE 13. Envelope Model Run Responding to 25\%
Additional Unforessen Work: Scope

FIGURE 14 . Envelope Model Run Responding to 25\% Additional Unforeseen Work: Part Staff Thcrease, Part Scope Decrease

As we can see, in every case where th variables differed in value, the envelope model's plan was adjusted to agree with the best-case SD model plan.

Evvelopen Model

 Adjusting ScopeWe have already seen in Figure 11 that the envelope model can correct an error of 25% unforeseen work with additional staff. Whether or not we are permitted to address our project's unforeseen difficulties with additional staff is a difficult question for discussion with our insist that the schedule be met and the insist that the schedule be met and the
original cost be maintained? That is, they original cost be maintained? That is, they
insist that no additional project staff be insist that no additional project staft be
hired? Government projects where the funding comes from Congress sometimes respond this way.
Can the envelope model's project use earned-value measures to achieve the tar-

FIGURE 12 . Two Models Variables and Values
get date by reducing scope? (The original scope of the project can be defined as the staff-hours of the original final goal of the project.) Figure 13 shows how the envelope model can respond to unforeseen work by reducing the scope (reducing the project goal).
Again, even with all the delays in the feedback loops of cause and effect, the envelope model's project reduces its scope to complete the combined project plus unforeseen work close to the original 30-month schedule (at 32 months, a
6.67% slip) and close to the original 23,960 staff-hours cost (at 24,730 staff6.67\% slip and close to the original 23,960 staft-hours cost (at 24,730 staflscope, a77.3\% reduction from the original goal. (Remember that 1.25 [54] increase in unforeseen work requires a $0.80[4 / 5]$ scope decrease to offset it) The small errors in cost and schedule performance are attributable to learning costs and the effects of delays in the project's feedback loops.

Stakenolder Chicice

The envelope model can also accommodate a stakeholder decision to split the response to unforeseen work between extra staffing and reduced scope. Fig ure 14 shows a 25% unforeseen work increase split between the two responses.

The results of the request to split the response to a 25% increase in unforeseen work has the project ending at 30.5 months with 27,765 staffhours of actual work, or a 15.9% increase over the originally planned 23,960 staff-hours, and 20,209 staff-hours of scope, or a 15.7% decrease to 84.3% of he original project scope.
Our envelope model demonstrates that earned-value measures can ed earned-value indexes, translate into system pressures, operate with realistic organizational delays, and smoothly address the challenges of unforeseen work.

Condusion

Initial system dynamics project models can capture the fine-grained interactions of traditional projects in realistic initial SD plans, which can be combined with envelope models that use earned-value metrics to deal with the large-scale unforeseen changes. These combined project models can provide useful insights to stakeholders and project leaders as they negotiate how best to balance a project's scope, schedule, and cost.

- John M. Jack) Nevison we. pestataronew ver
 int. Duting the course of his business carcer, Nevison has buitit and sold
wo businesse, managed projects, manged poject managers, and sevve

[1] Abdel-Hamid, Tarek K. (December 1989) "Lessons Learned from Modeling the Dynamics of Sof ware Development."
Communications of the ACM, Vol. 32, No. 12: pp. 1426-1438
[2] Chichakkly, K. (2007). "Modeling Agile Development: When I
It Effective?" Proc Int'1 Confo of the System Dynamics Society It Effect

2007.

[3] Christensen, David S., \& Kirk Payne (April 1992) "Cost Performance Index Stability: Fact or Fiction?" "Oournal of
Prent Parametrics 10 .

[4] Christensen, David S. (1993) "Determining an Accurate | Estimate a |
| :--- |
| Journal 25 |

[5] Christensen, David S. (Summer 1999) "Using the Earned Value Cost Management Report to Evaluate the Contractor's
Cooper, Kenneth G. (March 1993) The Rework Cycle: [6] Cooper, , Kenneth C. (March 1993) The Rework Cycle: Journal, Volume XXIV, No. 1: pp. 17-21.
[7] Cooper, Kenneth C . (March 1994) "The $\$ 2,000$ Hour: How Managers Influence Proiect Performance Through the
Rework Cycle." Project Management Journal, Volume XXV Rework Cycle.
No. 1: pp. 11-24.
[8] Fleming, ouentin W. and Joel M. Koppelman (2010). Earned Valuu Project Management, Fourth Edition. Newtow
Square, PA: Proiect Mana emement nstitute (PMI)
Nevison, John M. (March 1992) White Collar Project Nevison, John M. (March 1992) White Collar Project
Management Questionnaire Report. Internal Working Pape
Concord, MA: New Leaf Project Management. Concord, MA: New Leaf Project Management
[iol Nevison, John M. (June 1994) "Up To Speed: The Cost of Nevison, ohn m. .June 1994 Up To Speed: The Cost of
Learning on a White-Collar Project." Project Management Journal, Volume XXV, No. 2: pp. 11-15.
[i]] Nevison, Oohn M. (June 1994) "What Can we Learn About
Learning on Projects?" PMNETwork: pp. $6-8$.
Learning on Projects?" PMNETwork: pp. 6-8
[12] Nevison, John M. (June 2003) The Remaining Work
Index (RWI) and the Staffing to Schedule Index (StSI). Index (2 W Working Paper. Concord, MA: New Leat Project
Internal Management.
[13] Nevison, John M. (June 2013) StSI and RbSI Compared. Internal Working Paper. Concord, MA: New Leaf Project nagement.
[14] Nevison, John M. (December 2014) The Reduced Scope Index (RScc): How to estimate your adjusted scope as you finish your project on time and on budget. Intern
Working Paper. Concord, MA: New Leaf Project Working Pape
Management.
[15] Nevison, John M. (2015) "Working the 'Educated' Plan: How proiect?" Journal of Modern Proiect Man ingement IMPM projecte? 'lournal of Modern Project Management, MPN
iournal, - www.journalmodernpm.com Issue 06 - Jan-
Mav/ 2015 May/2015
[16] Powell, F. D. (1987) Study of a Software Development Process
Dynamic Model. Bedford, MA: Mitre Corporation. MTR 10314. [7] Roberts, E. . B. (1964) The Dynamics of Research an
Development. New York, NY: Harper and Row.

[^0]: available in Fleming and Koppelman (2010)
 2. Some earlier system models with real 2. Some earther system models with real-world examples are featured in Roberts
 11964), Powel ((1987), Abdel-Hamid (1989), Cooper (1993 and 1994) 1994). Cooper's work includes many other appplications of a systems model to roal world probems. ems.
 3. The "enveloe" model discussed here was called the "educated" 3. The "envelope" model liscussed here was called the "educated" model in the
 arlier report in Nevison (2015). 4. This model is a simplification of a model presented at a 2007 conference
 (Chichakly (2007).

