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r  A B S T R A C T 

The dependency structure matrix (DSM) shows the interdependency between activities, and it has been shown to be useful in the estimation 
of complex projects’ durations. The estimate of project durations is based on activity durations, their interrelationships, and the permitted 
level of overlapping, all of which are represented by DSMs. However, these variables have individual uncertainties that generate overall 
uncertainty in the project duration. The objective of this work is to show that uncertainty analysis and sensitivity analysis are essential parts 
of analyzing the uncertainty in project scheduling. Specifi cally, this work shows how to perform sensitivity analysis in project scheduling 
using DSM, how to reduce the number of input variables with uncertainty for sensitivity analysis, and how to identify input variables whose 
control of uncertainty reduces the uncertainty of the project duration. An example is used to explain the methodology, and a case study is 
used to show the usefulness of sensitivity analysis and uncertainty analysis.
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1. Introduction
Uncertainty analysis refers to the determination of the uncertainty in output varia-

bles that derives from uncertainty in input variables, whereas sensitivity analysis refers to 
the determination of the contribution of the individual uncertainties of input variables to 
the uncertainty in output variables. Both uncertainty analysis and sensitivity analyses are 
essential parts of analysis for complex systems (Helton et al.,2006). Uncertainty analysis is 
usually conducted to identify risk (usually in project duration) due to unexpected events 
(currently considered negative events). Sensitivity analysis is not common in project 
scheduling. However, sensitivity analysis can be useful in the identifi cation of unexpected 
events (both negative and positive) that produce risks and opportunities in project sched-
uling, which will be shown later.

In general, there are two types of uncertainty: epistemic (or systematic/reducible) and 
stochastic uncertainty (or aleatory/irreducible). Epistemic uncertainty is related to the 
absence of knowledge or incomplete knowledge about the appropriate value to use for a 
quantity that is assumed to have a fi xed value in the context of a particular analysis. For 
example, the duration of an activity can be diffi  cult to defi ne if there is not a model that 
can predict its exact value. Conversely, stochastic uncertainty arises from the random 
behavior of the system under study. Activities that depend on weather conditions and 

human performance generally present this type of 
uncertainty. Th e uncertainty under consideration in 
this work that arises from the duration of the activi-
ties, their interrelationships, and the permitted level 
of overlap can be epistemic or stochastic. 

Project scheduling, i.e., determining the sequence 
of activities, is important to the development of any 
project because appropriate sequencing reduces the 
amount of time necessary for completion. Project 
scheduling can be a diffi  cult task because the order 
of activities is infl uenced by the information fl ow 
among them and because the activities can present 
overlap. Th e DSM can be used to model dependency 
(information fl ow) and interaction (overlap) between 
activities, which is why the DSM has been used to 
manage complex projects. In representing a project 
using DSM, diff erent activities are broken down or 
are put together as needed to simplify the complexity 
of the project. For example, by breaking down the 
project into smaller activities and by identifying the 
relationship between them, it is possible to assess the 
eff ects of these smaller activities on the project and to 
assign resources to these activities (Browning, 2001). 
Several authors have recognized the importance of 
project scheduling to optimize the effi  ciency of the 
project (Tienda and Romano, 2011), an issue that also 
depends on the project analysis. In this sense, the 
DSM is a good tool to analyze the dependencies and 
interdependencies of a project, and therefore, recent 
eff orts to reconcile project scheduling and DSM have 
sought to produce a tool that serves two purposes: 
analysis and project scheduling (Srour et al., 2013; 
Maheswari and Varshese, 2005). Th ese studies have 
demonstrated that DSM is also a powerful tool in 
planning the sequence of activities. 

However, activities in a project are subject to 
many unknown factors (Herroelen and Leus, 2005; 
Perminova et al., 2007) that can lead to changes in 
scheduling (Lamas and Demeulemeester, 2016). Th e 
factors that produce uncertainties have diff erent 
origins, such as the unavailability of resources, the 
availability of materials before or behind schedule, 
and issues related to labor, with or without the desired 
qualifi cations, but all make activities take more or 
less time than was originally estimated (Fu et al., 
2015). Th ese uncertainties can cause the schedule to 
be delayed, increase stock, or require major work, all 
of which lead to higher costs than those originally 
planned. Th e information used by the DSM, including 
activity duration, the time required for commu-
nication, and activity overlap, can have uncertain 
values. Th e eff ect of these uncertainties on the project 
duration must be studied, and the identifi cation of 
signifi cant and insignifi cant input variables on the 
project duration uncertainty needs to be identifi ed. 

Gálvez et al. (2015) applied Morris and Sobol´ methods to identify the key activities that aff ect the 
uncertainty in the duration of the project.

Th e objective of this work is to show that uncertainty analysis and sensitivity analysis are 
essential parts of analyzing the uncertainty in project scheduling. Th erefore, some methods are 
introduced, but a complete review or survey of methods is outside of the objective of this manuscript. 
Overviews of uncertainty and sensitivity analysis are available in several reviews (Ionescu-Bujor and 
Cacuci, 2004; Cacuci and Ionescu-Bujor, 2004; Frey and Patil, 2002; Iooss and Lemaître, 2015) and 
books (Saltelli et al., 2008; Ronen, 1988; Saltelli et al., 2009). Th is paper shows that global sensitivity 
analysis (GSA) can be used to identify signifi cant and insignifi cant input variables on project dura-
tion using the dependency structure matrix (DSM). Th is information can be used to identify input 
variables whose control is signifi cant in reducing uncertainty in the project duration and to identify 
the input variables whose uncertainty is insignifi cant in sensitivity analysis.

Th roughout this manuscript, a “simple example” is used to illustrate our discussion of 
uncertainty and sensitivity analyses. Th e example consists of six activities, A through F, and the 
DSM representation of the example is given in Figure 1. Th e example is “simple” because it has few 
activities, but the example is complex because there are several interactions between the activities 
and because there is uncertainty in the input variables. Th e DSM is a matrix of the same number 
of rows and columns, where activities are represented in the rows and columns with the aim of 
showing dependence. (For more information, see the work of Maheswari and Varghese, 2005.) 
Values along the diagonal are the mean duration time of the activities (days); for example, the 
mean duration of activity A is 2 days in Figure 1. Th e marks in the off -diagonal cells indicate that 
these activities are information predecessors, with activity inputs in the rows and activity outputs 
in the columns. Activity B needs information from activity A, and activity B provides information 
to activities D and E. 

In Figure 1, the traditional, conventional, or sequential method for delivering a construction 
project is shown. In this method, an activity starts once its predecessors are completed. Based on 
the mean duration time of the activities, the conventional project duration is estimated to be 14 
days (Figure 1). Note that activity C has no eff ect on the project duration, and all other activities 
are in the sequence of execution without any time left over between activities. Th e conventional 
project duration is estimated with

(EF)i = (ES)i+Aii 0<i≤n
(ES)j = Max[(EF)i ] 0<i≤n,0<j≤n
Conventional project duration = Max[(EF)j ]        0<j≤n
Equation 1 indicates that the early fi nish (EF) of activity i is determined based on the early 

start (ES) and on the duration (given by the diagonal values of DSM, Aii). Th e (ES)j is the maximum 
of all (EF)i, where i is the predecessors of j, and j is the current activity. Finally, the conventional 
project duration is the maximum value of EF of the n activities that comprise the project.

(01)
(02)
(03)

FIGURE 01. DSM showing the mean values of the duration of activities (matrix Aij) 
and conventional scheduling

Figure 2 shows the fast-track or overlap method for delivering a project. In this method, some 
overlap occurs between pairs of activities. Figure 2 uses the same example from Figure 1 but allows 
for overlap between activities. Th e overlap is represented in DSM in the form of ratios called time 
factors (Maheswari and Varghese, 2005). Two time factors are used: the time factor of receiving 
the information for the successor activity (represented by matrix Bij, given by the off -diagonal 
cell in Figure 2b) and the time factor of sending the information from the predecessor activity 
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(represented by matrix Cij, given by the off -diagonal cell in Figure 2c). In 
other words, an element of matrix B (for example BCA) indicates the fraction 
of the duration of the predecessor activity (activity A with a fraction of 0.95 
in Figure 2) at which that activity can send information to the successor 
activity (activity C). In the same way, an element of matrix C (for example 
CCA) indicates the fraction of the duration of the successor activity (activity 
C with a fraction of 0.05 in fi gure 2) at which that activity needs to receive 
information from the predecessor activity (activity A). Based on the mean 
values of the activity durations and the mean values of the factor time, the 
natural overlap project duration is estimated to be 12.4 days (Figure 2a).

uncertainties. In fuzzy theory, meaning is clearly defi ned (the duration of 
this task is long), but its extension is represented by membership functions 
that are diff use. By contrast, the grey theory extension is clearly defi ned (the 
activity lasts between 2 and 3 days), but its meaning is not explicitly stated. 
In probability theory, uncertainty is represented by probability distribution 
functions. In this work, only the probabilistic representation of uncertainty 
is considered. However, several works have addressed the representation 
of uncertainty based on the work of Maheswari and Varghese, (2005) on 
project scheduling using DSM. Gálvez et al. (2012) studied the eff ect of the 
uncertainty of activity programming using DSM and grey theory or interval 
arithmetic. Shi and Blomquist (2012) extended the DSM method proposed 
by Maheswari and Varghese using fuzzy numbers. Th e drawback of these 
methods is the need to characterize all input variables, which are typically 
defi ned through an expert review process, and overestimation of the uncer-
tainty of the output variables has been demonstrated for interval arithmetic 
(Gálvez et al., 2015) and is shown here for fuzzy numbers.

Th e defi nition of the distribution functions that represent the uncer-
tainty in the duration of activities and the time-overlap factors can be one 
of the most signifi cant parts of uncertainty analysis because these distribu-
tions can determine the uncertainty of the project duration. Th e distribu-
tion functions that represent the stochastic uncertainty in input variables 
can be defi ned based on the data available from previous projects. To use 
these data to identify the distribution function, it is necessary to know 
whether the conditions under which these data were obtained are the same 
conditions under which the project will be analyzed.

Th e distribution functions to represent the epistemic uncertainty must 
be defi ned through an expert review process, and their development can 
constitute a major analysis cost. Th e process of extracting expert knowledge 
about some unknown quantity or quantities and formulating that infor-
mation as a probability distribution is known as elicitation (O´Haga et al., 
2006; Meyer, 2006,). Th e range of elicitation can vary broadly based on the 
purpose and size of the analysis and the resources available to perform the 
analysis. An alternative is to perform an initial uncertainty analysis based 
on a crude defi nition of the distribution functions for the activity duration 
time and the time overlap factors to understand the behavior of the project 
duration uncertainty. Th en, resources can be concentrated where needed. 
Sensitivity analysis can also be used to reduce the number of input variables 
before the characterization, as will be shown later. 

Defi ning these distributions by specifying their parameters (mean, 
standard deviation) is not advisable; rather, selected cumulative distribution 
functions should be specifi ed based on the experts. Here, the distributions 
are specifi ed using their parameters as the fi rst step in the analysis. Th is 
work uses three types of distribution functions for the input variables to 
study their eff ect on the uncertainty in the project duration. Th e distribu-
tion functions studied have a continuous uniform distribution, a normal 
distribution, and a log-normal distribution. Th e continuous uniform 
distribution is here abbreviated as U(a,b), where a and b are its minimum 
and maximum values, respectively. Th e normal distribution is abbreviated 
as N(µ,σ2), where µ is the mean, and σ2 is the variance. Th e log-normal dis-
tribution is abbreviated as log-N(µ, σ2), where µ and σ2 are the mean and the 
variance of the variable’s natural logarithm, respectively.

For a uniform distribution, each duration activity has an uncertainty 
of ±0.5 days, which indicates, for example, that activities A and D have du-
rations of U(1.5,2.5) and U(4.5,5.5), respectively. Similarly, each time factor 
has an uncertainty of ±0.05, so the off -diagonal values of Bij are U(0.9,1.0), 
and the off -diagonal values of Cij are U(0.0,0.1), but BBA is U(0.74,1.0), and 
CBA is U(0.0,0.26). For a normal distribution, each duration activity has a 

FIGURE 02. DSM showing the mean values of the duration of activities and 
time factors of transfer of information between activities with overlap scheduling

Th e natural overlap project duration is estimated with
(ES)j = Max [(ES)i+Bji Bii-Cji Cjj]                               0<i≤n,0<j≤n 
(ES)j = (ES)i+ii                                                                  0<i≤n
natural overlap project duration = Max[(EF)j]        0<j≤n
where the meaning of the variables is the same as in equations 1 to 3, and 

the diagonal values of C DSM (Bii and Cii) are the duration of activity i.

2. Uncertainty analysis
Th e goal of this section is to show how to apply uncertainty analysis in 

project scheduling using DSM. Th e uncertainty analysis must answer the 
question: What is the uncertainty in the project duration (and other output 
variables, such as early fi nish) given the uncertainty in the activity dura-
tions and the time-overlap factors? Uncertainty analysis can be divided into 
three steps: a) First, it is necessary to represent the uncertainty based on the 
characteristics and behavior of the uncertainty. b) Th en, the uncertainty in 
the output variables is determined based on the system model and the rep-
resentation of the uncertainty of the input variables. c) Finally, it is necessary 
to represent the uncertainty of the output variables for analysis. Th ese steps 
are briefl y reviewed in the example above.

2.1 Representation of uncertainty

Th e uncertainty of the input variables can be characterized using fuzzy 
theory, grey theory (interval analysis), and probabilistic theory, among 
others. Grey and fuzzy theories are best suited to represent epistemic uncer-
tainty, whereas the theory of probability is more suitable for the stochastic 
uncertainty. Grey and fuzzy theories diff er in the meaning and extension of 

(04)
(05)
(06)

TABLE 01. Basic statistics for project duration uncertainty

variance of 0.0841 (a standard deviation of 0.29) and a 
mean given in Figure 1; for example, activities A and D 
have durations of N(2,0.292) and N(5,0.292), respec-
tively. For a log-normal distribution, each duration 
activity has a variance of 0.09 (a standard deviation of 
0.3) and a mean given by the logarithm of the values 
given in Figure 1; for example, activities A and D have 
durations of log-N(log(2),0.32) and log-N(log(5),0.32), 
respectively. Likewise, each time factor has a variance 
of 0.04 (a standard deviation of 0.2) and a mean given 
by the logarithm of the values given in Figure 2. Th e 
off -diagonal values of Bij are log-N(log(0.95),0.22), and 
the off -diagonal values of Cij are log-N(log(0.05),0.22), 
whereas BBA is log-N(log(0.87,0.22), and CBA is log-
N(log(0.13),0.22).

2.2 Determination of output variables’ 
uncertainty

In fuzzy and grey theories, the determination 
of uncertainty in project duration and other output 
variables is performed using fuzzy mathematics and 
interval mathematics. In other words, the mathe-
matical operators in equations 1-6 are replaced by 
fuzzy or grey transformations. Th e works of Gálvez 
et al. (2012) and Shi and Blomquist (2012) show these 
transformations for grey and fuzzy theories, respec-
tively. In probability theory, the determination of the 
output variable uncertainty is performed in two steps, 
the generation of the sample and the evaluation of the 
output variables for each sample element. 

2.2.1 Sample generation 

Random sampling is the simplest form of 
sampling because new sample points are generated 
without taking into account the previously generated 
sample points. However, a great number of sam-
ples are typically required in random sampling to 
achieve good accuracy, which is why other sampling 
strategies have been developed. Th e more com-
mon sampling strategies, diff erent from random 
sampling, are importance sampling, orthogonal 
sampling, and Latin hypercube sampling. Latin 
hypercube sampling is a widely used method to gen-
erate controlled random samples (Mckay et al., 1979) 
because its eff ective stratifi cation properties permit 
the extraction of a large amount of uncertainty 
information with a relatively small sample size. Latin 
hypercube sampling should be considered a good 
option when the model has a high computational 
cost. Orthogonal sampling adds to the stratifi cation 
properties of Latin hypercube with the requirement 
that the entire sample space must be sampled evenly. 
Orthogonal sampling is more effi  cient but more 
diffi  cult to implement. Importance sampling is more 
eff ective for large sample sizes to cover the low prob-
ability and/or high consequence subsets of values 

for input variables and usually is not a good option for sensitivity analysis. Because the models 
for project duration are simple, random sampling can be an adequate sampling strategy, but if a 
large number of activities are involved, then Latin hypercube can be a more effi  cient alternative. 
Latin hypercube sampling is also available in several commercial software programs. Here, ran-
dom sampling was used with 3,000 model calls for the simple example and with 100,000 model 
calls for the case study (a medium-sized problem).

2.2.2 Evaluation of the output variables for each sample element

Usually, the evaluation of the project duration and other output variables for each element of 
the sample is the step that demands the most computational costs. Th is step aims to determine 
the project duration and the ES and EF of each activity for each value of activity duration and 
overlapping factors of the sample. In project scheduling, this process is simple because the models 
are simple. Equations 1 through 3 are for a conventional project duration, and equations 4 through 
6 are for a natural overlap project duration. In these models, the maximization functions produce 
discontinuities in the model, and these discontinuities do not allow for the use of local sensitivity 
analysis because the equations are not diff erentiable. Furthermore, the models are monotonic.

2.3 Presentation of output variable uncertainty
Th e presentation of uncertainty analysis results involves little more than displaying the results 

associated with the calculated mapping of the activity duration time and the time overlap factors 
versus the project duration. For fuzzy and grey theories the output variables are presented by 
fuzzy numbers and intervals, respectively. For probability theory, the options for presentation 
include means and standard deviations, density functions, cumulative distribution functions, box 
plots and statistical tests (Tufte, 2001).

Table 1 gives the median, mean, minimum, maximum, and fi rst and third quartiles. Th ese 
values give us a fi rst view of the uncertainty in the project duration. Th e median and mean are 
central values, and for normal distribution, the mean and median are actually equivalent. Based 
on the values in Table 1, the normal and uniform distributions have similar median and mean 
values, but for the log-normal distribution, the mean is greater than the median. In addition, the 
uniform and normal distributions have similar behavior.

Figure 3 shows the histogram and density function for the conventional and natural overlap 
project durations. When the uncertainty in the activity durations and time-overlap factors are 
represented by uniform and normal distribution functions, the uncertainty in project durations 
follows a normal distribution function. Th is visual behavior is confi rmed by the Kolmogor-
ov-Smirnov test of normality (Stephens, 1974). When the uncertainty in the activity durations and 
the time overlap factors are represented by a log-normal distribution function, the uncertainty 
in the project durations does not follow a normal distribution function. However, if the standard 
deviation of the log-normal distribution of the input variables is reduced to half its value, then the 
uncertainty in the project durations follows a normal distribution with a mean and a median of 
13.07 and 13.05, respectively. 

Th e normal distribution is symmetric, which means that the probability that the project dura-
tion is one day more than the mean is the same as the probability that the duration is one day less 
than the mean. Th e log-normal distribution (Figure 3c) shows that the project is more likely to have 
a longer duration than the mean than a shorter one.

Th e cumulative distribution function of the project duration describes the probability that the 
project duration will have a value less than or equal to a specifi c value of project duration. Figure 

4 shows the cumulative functions for the conventional project duration. Normal distribution 
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functions are also included, but there is no difference with the cumulative 
functions, except for the log-normal distribution. The probability that the 
project duration has a value less than or equal to 16 days is 1, 1, and 0.45 for 
the uniform, normal and log-normal distributions, respectively.

A box plot or box and whisker is based on quartiles, and in it, a set 
of data is displayed. The box shows the first, second (median), and third 
quartiles, whereas whiskers represent the maximum and minimum values. 
Atypical values are shown with points. Specifically, the ends of the whiskers 
represent the lowest datum still within 1.5 of the interquartile range (IQR) 
of the lower quartile and the highest datum still within 1.5 IQR of the 
upper quartile. The IQR is a measure of statistical dispersion, equal to the 
1st quartile subtracted from the 3rd quartile. Box plots may seem more 
basic than histograms, but they do have some advantages. They take up less 
space and are therefore particularly useful for displaying and comparing the 
uncertainty of a number of variables. For example, Figure 5 shows the early 
start and early finish of all activities for the conventional project duration. 
Symmetry without an extreme observation in the box plots is typical of uni-
form distribution, whereas symmetry with extreme observation is typical of 
a normal distribution. Moreover, asymmetry in the box plots is typical of a 
log-normal distribution.

9 
 

  
a) Uniform distribution 

  
b) Normal distribution 

  
c) Log-normal distribution 

Conventional Natural overlap 
Fig. 3. Histogram and density functions for conventional and natural overlap project durations 

 10 
 

   
a) Uniform b) Normal c) Log-normal 

Fig. 4. Cumulative functions for the conventional project duration 
 

  
Early start Early finish 

a) Uniform distribution 

  
Early start Early finish 

b) Log-normal distribution 
Fig. 5. Box plot for early start and early finish in conventional project duration 
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Fig. 4. Cumulative functions for the conventional project duration 
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a) Uniform distribution 

  
Early start Early finish 

b) Log-normal distribution 
Fig. 5. Box plot for early start and early finish in conventional project duration 

FIGURE 03. Histogram and density functions for conventional and natural 
overlap project durations

FIGURE 05. Box plot for early start and early finish in conventional 
project duration

FIGURE 04. Cumulative functions for the conventional project duration

In Figure 5a, the early starts of activities B and C follow an uniform 
distributions, and the early finishes of activities D and F follow normal 
distributions. In Figure 5b, log-normal distributions are observed.

The box plots of B and C activities for the uniform distribution show 
that the probability that C ends after B is low (see the first and third 
quartiles of early finish, Figure 5a). Then, activity B controls the early start 
of activities D and E. A different behavior is observed for the log-normal 
distribution (Figure 5b), where there is a higher probability that C ends after 
B; therefore, activities D and E have different early starts.

3. Sensitivity analysis
The objective of this section is to show the use of the Sobol method, 

a global sensitivity method, for identifying significant and insignificant 
input variables on the project duration using the DSM. This information is 
used to identify input variables whose control is significant for reducing the 
uncertainty in project duration and to identify the input variables whose 
uncertainty is insignificant in sensitivity analysis.

3.1 Sobol method.

Sensitivity analysis refers to the determination of the contribution of 
individual uncertainty inputs to the uncertainty in output results (Helton 
et al., 2006). Saltelli et al. (2008) defined GSA as “the study of how uncer-
tainty in the output of a model (numerical or otherwise) can be apportioned 
to different sources of uncertainty in the model input.” One of the major 
applications of GSA is in the identification of significant or influential (and 
insignificant/non-influential) variables to use this information to reduce 
the number of variables with uncertainty for further studies. In addition, 
GSA can be used to understand model behavior, for example, by identifying 
interactions between variables and linear (or nonlinear) behavior between 
output and input variables. GSA, as opposed to local sensitivity analysis, 
corresponds to the evaluation of an output model when all input variables 
are simultaneously evaluated and considering the total uncertainty range. 
Although these two differences provide advantages to GSA in comparison 
with local sensitivity analysis, GSA requires more computational costs be-
cause it requires a large sample and more data manipulation of the sample 
(Sepúlveda et al., 2014). GSA methods can be classified into three groups 
(Confalonieri et al., 2010): regression methods, screening methods, and 
variance-based methods. 

Variance-based methods decompose the variance of the model output 
into terms of partial variances, which denote the contribution of the inputs 
to the overall uncertainty in the model output. These partial variances are 
estimated using multi-dimensional integrals, which is computationally 
expensive. To reduce the computation cost, Homma and Saltelli (1996) 
developed the concept of a total sensitivity index. In the total sensitivity in-
dex, the overall effect of a given input is included by considering all possible 
interactions of the respective input with all other inputs. 

There are several methods based on the variance that can be used to 
analyze project scheduling using DSM. Here, the Sobol’ (1993) method 
and the improvements made by Jansen (1999) and Saltelli et al. (2010) will 
be used. Specifically, both GSA methods will be used to study how the 
uncertainty in project duration can be assigned to the activity duration and 
overlapping factor uncertainties. 

Let us consider that the model has the form Y=f(x1,x2,…xn ), where Y is 
a scalar, and xi is a model variable; then, the Sobol method is based on the 
partitioning of the total variance of the model output V(Y) using the follow-
ing equation (Confalonieri et al., 2010; Sepúlveda et al., 2014):

V(Y)=∑n
i=1 Di +∑n

i≤j≤n Dij + ... +∑n
i≤…n Di…n

where Di, Dij, Dijk, D1…n denote the first-order effect, the second-order 
effect, the third-order effect, and the interactions among n variables, re-
spectively, where (Di=V [E (Y|xi )]), (Dij=V[E(Y|xi,xj )]-Di-Dj ), (Dijk=V[E(Y|xi, 
xj,xk )]-Dij-Djk-Dki-Di-Dj-Dk ). The variance of the conditional expectation 
(V[E(Y|xi )]) is sometimes called the main effect, and it is used as an indi-
cator of the significance of xi. In the Sobol method, the first-order effect 
sensitivity index corresponding to a single variable (xi), Si, is given by 

Si= V [E (Y | xi ) ] Di

V (Y ) V (Y )

The second-order effect sensitivity index corresponding to two varia-
bles (xi and xj), Sij, is given by 

Sij= Dij

V (Y )

and so on until order n.
Based on equation 7 and the definition of the Sobol sensitivity indices 

(equations 8 and 9), the following relation can be obtained:

1=∑n
i=1 Si +∑n

i≤j≤n Sij +...+∑n
i≤…nSi…n    

The interpretation of the sensitivity indices is straightforward: As the 
sensitivity index increases in size, the corresponding input variable or set of 
input variables becomes more influential. Because the indices are all posi-
tive, the maximum value of a sensitivity index is 1. The number of indices 
can become large (the total number is 2n-1), and therefore, its interpretation 
can become unmanageable. Homma and Saltelli (1996) introduced the total 
sensitivity indices, which assess the sensitivity of the variance of the output 
variable with respect to the standalone and every interaction of the consid-
ered input variable, that is

ST
i =1 - D- i

V (Y )

where D-i represents the variance explained by all input variables except 
xi (Di=V[E(Y| x-i ]).

The first-order sensitivity index measures the main effect of each 
input variable’s uncertainty to the output variance uncertainty. When the 
first-order sensitivity index (Si) of the i input variable has a high or moderate 
value, the uncertainty in xi affects the uncertainty in the output model, 
Y, and therefore, xi is significant. Inversely, when the value of first-order 
sensitivity index (Si) is zero or very small, xi is insignificant (Sepúlveda et 
al., 2014). The first-order sensitivity index does not take into account the 
interaction among variables; therefore, it does not say anything about the 
input interactions or high-order sensitivity indices, such as Si,j or Si,j,k. The 
total sensitivity index (ST

i) is important when the objective is to reduce 
uncertainty in the output model (Adeyinka, 2007). If the total sensitivity 
index (ST

i) is small, then apart from being insignificant, xi does not interact 
with other variables, and high-order effects of xi are negligible. Therefore, 
the uncertainty in xi has no effect on the uncertainty in Y if Si and ST

i are 
small. Then, in successive analysis, xi can be fixed to its nominal value, and 
further research, measurement, analysis and data gathering can be directed 
toward other variables (Sepúlveda et al., 2014). The interactions between xi 
and other variables can be calculated by the arithmetic difference between 
ST

i and Si .

3.2 Application

Two methods are used here for the computation of Sobol indices: the 
Sobol standard estimator, which allows for estimating the indices of the 
variance decomposition up to a given order at a total cost of (P + 1) * s model 
evaluation, where P is the number of indices to estimate and s is the sample 
size, and the Sobol-Jansen method for both first-order and total indices 
simultaneously at a total cost of (n + 2) * s model evaluations, where n is the 
number of input variables. Software R (R Core Team, 2013) and package 
sensitivity (Pujol et al.,2014), which is a free software environment for 
statistical computing and graphics, were used. 

The Sobol-Jansen method was applied to the example for conventional 
project duration (equations 1 through 3) with six random inputs (size of 
50,000) with Monte Carlo sampling and a cost of 400,000 model calls. 
Figure 6a plots the first-order and total Sobol indices for a uniform distri-
bution. It is easy to visualize that A, F, B, D, and E activities are influential 
in that order (with large values of both first-order and total Sobol indices), 
whereas C has no effect. In addition, D and E have interaction. (The total 
and first-order indices have different values.) The interactions in the other 
activities are small. Similar results were obtained for the normal distribu-
tion functions. Figure 6b plots the results for a log-normal distribution. Ac-
tivities D, B, E, and F are influential in that order (with large values of both 
first-order and total Sobol indices), whereas A and C have little effect. In 
addition, B, C, D, and E have interactions. (The total and first-order indices 
have different values.) The interactions in A and F activities are small.

(07)

(08)

(09)

(10)

(11)
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toward other variables (Sepúlveda et al., 2014). The interactions between 𝑥𝑥! and other 
variables can be calculated by the arithmetic difference between 𝑆𝑆!! and 𝑆𝑆! . 
 
 
3.2 Application 
Two methods are used here for the computation of Sobol indices: the Sobol standard estimator, 
which allows for estimating the indices of the variance decomposition up to a given order at a 
total cost of (P + 1) * s model evaluation, where P is the number of indices to estimate and s is 
the sample size, and the Sobol-Jansen method for both first-order and total indices 
simultaneously at a total cost of (n + 2) * s model evaluations, where n is the number of input 
variables. Software R (R Core Team, 2013) and package sensitivity  (Pujol et al.,2014), which 
is a free software environment for statistical computing and graphics, were used.  
The Sobol-Jansen method was applied to the example for conventional project duration 
(equations 1 through 3) with six random inputs (size of 50,000) with Monte Carlo sampling 
and a cost of 400,000 model calls. Figure 6a plots the first-order and total Sobol indices for a 
uniform distribution. It is easy to visualize that A, F, B, D, and E activities are influential in 
that order (with large values of both first-order and total Sobol indices), whereas C has no 
effect. In addition, D and E have interaction. (The total and first-order indices have different 
values.) The interactions in the other activities are small. Similar results were obtained for the 
normal distribution functions. Figure 6b plots the results for a log-normal distribution. 
Activities D, B, E, and F are influential in that order (with large values of both first-order and 
total Sobol indices), whereas A and C have little effect. In addition, B, C, D, and E have 
interactions. (The total and first-order indices have different values.) The interactions in A and 
F activities are small. 
 

  
a) Uniform distribution b) Log-normal distribution 

 

Fig. 6. Estimation of Sobol-Jansen indices for the example without overlap 

 

As a comparison, the Sobol standard estimator method was also applied to the example for 
conventional project duration (equations 1 through 3) with six random inputs with Monte 
Carlo sampling and a cost of 1,100,000 model calls, which is 2.75 times more expensive than 
the Sobol-Jansen method. This cost is higher because the Sobol standard estimator has to 
determine 21 indices (six first-order and 15 second-order indices), whereas the Sobol-Jansen 
method has to determine only twelve indices (six first-order and total indices). Figure 7 plots 
the first- and second-order indices for uniform and log-normal distributions. The first-order 
indices are similar to the ones obtained using the Sobol-Jansen method. The second-order 

FIGURE 06. Estimation of Sobol-Jansen indices for the example without overlap
FIGURE 07. Sobol standard estimator indices for 
conventional project duration

FIGURE 08. Estimation of Sobol-Jansen indices for 
natural overlap project duration

As a comparison, the Sobol standard estimator method was also applied to the example 
for conventional project duration (equations 1 through 3) with six random inputs with Monte 
Carlo sampling and a cost of 1,100,000 model calls, which is 2.75 times more expensive than the 
Sobol-Jansen method. Th is cost is higher because the Sobol standard estimator has to determine 
21 indices (six fi rst-order and 15 second-order indices), whereas the Sobol-Jansen method has 
to determine only twelve indices (six fi rst-order and total indices). Figure 7 plots the fi rst- and 
second-order indices for uniform and log-normal distributions. Th e fi rst-order indices are similar 
to the ones obtained using the Sobol-Jansen method. Th e second-order indices show that the only 
important interaction is between the duration of activities D and E for the uniform and log-nor-
mal distributions. In addition, the log-normal distribution also shows the interaction between B 
and C activities, which is consistent with the Sobol-Jansen results. 

Th e diff erence between the uniform (and normal) and log-normal distribution is due to the 
diff erence in the magnitude of the uncertainty in the time duration of each activity. Th is can be 
seen in Figure 5 in the comparison of the box plots of the early start and early fi nish of the uniform 
and log-normal distributions. However, if the standard deviation of the log-normal distribution 
in the input variables is reduced to half its value, then the Sobol and Sobol-Jansen indices for the 
log-normal distribution follow a behavior similar to that of the uniform and standard distribu-
tions. A similar behavior was also observed in the project duration uncertainty analysis in the 
previous section. 

Th e Sobol-Jansen method was applied to the example with overlap (equations 4 through 6) 
with 20 random inputs with Monte Carlo sampling and a cost of 1,100,000 model calls. Figure 

8a plots the results for the uniform distribution. Th e A, B, D, and F activity durations and the 
CBA time factor are very infl uential (with large values of the Sobol indices), and C and E activity 
durations and the BBA and BFD time factors are infl uential. Several time factors have no eff ect (with 
values of the Sobol indices close to zero). In addition, B, C, D, E and CBA have interactions. (Th e to-
tal and fi rst-order indices have diff erent values.) When normal distribution functions are used to 
represent the uncertainties in the input variables, similar behavior is observed. Figure 8b plots the 
results for the log-normal distribution. Uncertainty in the durations of activities D, B, E, and F and 
the B_FD and BFE time factors are very infl uential (with large values of the Sobol indices), and the A 
and C activity durations and the BDB, BCD, and BEB time factors are infl uential. Several time factors 
have no eff ect (with values of the Sobol indices close to zero). In addition, B, C, D, and E and BFD, 
BFE, BDB, BCD, and BEB have interactions (the total and fi rst-order indices have diff erent values). Th e 
diff erences between the uniform and the log-normal distributions are due to the magnitude of the 
uncertainties used in each case.

Th e Sobol standard estimator method was not applied to natural overlap project duration be-
cause this case has 20 input variables, with a need to evaluate 220-1 indices, which is unmanageable. 

3.3 Discussion

For the example of conventional project duration (without overlap), all activities have the same 
level of uncertainty in duration; however, the eff ect of these uncertainties on the uncertainty of 
the project duration is diff erent. 

For a uniform distribution, normal distribution, and log-normal distribution with the stand-
ard deviation reduced to half of its value, the following behavior is observed: Th e uncertainty in 
the time duration of activities A and F is the most relevant to the uncertainty in the project dura-
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indices show that the only important interaction is between the duration of activities D and E 
for the uniform and log-normal distributions. In addition, the log-normal distribution also 
shows the interaction between B and C activities, which is consistent with the Sobol-Jansen 
results.  
The difference between the uniform (and normal) and log-normal distribution is due to the 
difference in the magnitude of the uncertainty in the time duration of each activity. This can be 
seen in Figure 5 in the comparison of the box plots of the early start and early finish of the 
uniform and log-normal distributions. However, if the standard deviation of the log-normal 
distribution in the input variables is reduced to half its value, then the Sobol and Sobol-Jansen 
indices for the log-normal distribution follow a behavior similar to that of the uniform and 
standard distributions. A similar behavior was also observed in the project duration uncertainty 
analysis in the previous section.   
 

 
Fig. 7. Sobol standard estimator indices for conventional project duration 

 

The Sobol-Jansen method was applied to the example with overlap (equations 4 through 6) 
with 20 random inputs with Monte Carlo sampling and a cost of 1,100,000 model calls. Figure 
8a plots the results for the uniform distribution. The A, B, D, and F activity durations and the 
𝐶𝐶!" time factor are very influential (with large values of the Sobol indices), and C and E 
activity durations and the 𝐵𝐵!" and 𝐵𝐵!" time factors are influential. Several time factors have 
no effect (with values of the Sobol indices close to zero). In addition, B, C, D, E and 𝐶𝐶!" have 
interactions. (The total and first-order indices have different values.) When normal distribution 
functions are used to represent the uncertainties in the input variables, similar behavior is 
observed. Figure 8b plots the results for the log-normal distribution. Uncertainty in the 
durations of activities D, B, E, and F and the 𝐵𝐵!" and 𝐵𝐵!" time factors are very influential 
(with large values of the Sobol indices), and the A and C activity durations and the 𝐵𝐵!", 𝐵𝐵!", 
and 𝐵𝐵!" time factors are influential. Several time factors have no effect (with values of the 
Sobol indices close to zero). In addition, B, C, D, and E and 𝐵𝐵!", 𝐵𝐵!", 𝐵𝐵!", 𝐵𝐵!", and 𝐵𝐵!" have 
interactions (the total and first-order indices have different values). The differences between 
the uniform and the log-normal distributions are due to the magnitude of the uncertainties used 
in each case. 
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tion (with the largest values of Sobol indices) because 
these activities are sequential without interaction and 
will always infl uence project implementation. Th e 
uncertainty in the time duration of activities D and 
E also aff ects the uncertainty in the project duration. 
However, activity D aff ects only whether the duration 
of activity D is greater than the duration of activity E, 
and vice versa. For that reason, these activities have 
interaction (diff erent values in the fi rst-order and total 
Sobol indices). 

Th ese results indicate that eff orts to reduce 
uncertainty in the project duration should focus on 
reducing the uncertainty in the duration of activities 
A, F and B. Reducing uncertainty in the duration of 
activities D and E has a smaller eff ect on the uncer-
tainty in the project duration. Reducing uncertainty 
in the duration of activity C will have minimal eff ect. 
If resources are limited, the resources must be allocat-
ed to estimate the uncertainty of activities A, F and B. 
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a) Uniform distribution 

 
b) Log-normal distribution 

Fig. 8. Estimation of Sobol-Jansen indices for natural overlap project duration 

 

Despite the uncertainty in the duration of each activity having a uniform or normal 
distribution, the project duration is normally distributed. Note that the average value of the 
project duration is larger than the value calculated with the mean values (14 days) because the 
interaction was not considered. In fact, if the activity durations with the largest interactions is 
fixed (D and E), the mean value is close to 14 days. If all activities are uncertain, then the 
uncertainty in the project duration is 3.4 days; if the uncertainty in activity C is removed, the 
uncertainty in the project duration is not significantly reduced at 3.3 days. However, if the 
uncertainty in activities A and F is eliminated, the uncertainty in the project duration is reduced 
to 1.8 days, compared to 2.7 days if the uncertainty is removed in activities D and E. This 
finding confirms that GSA (the Sobol method) can be used to identify the input variables and 

Table 2 shows the results of Monte Carlo simulations for various scenarios with 1,000 calls to 
the model. Th e second column shows the results of the project duration when considering uncer-
tainty in all activities. Columns two, three and four show the results of the project duration when 
the duration of activities A and F, D and E, and C is fi xed (at their average values), respectively. 

Despite the uncertainty in the duration of each activity having a uniform or normal distri-
bution, the project duration is normally distributed. Note that the average value of the project 
duration is larger than the value calculated with the mean values (14 days) because the interaction 
was not considered. In fact, if the activity durations with the largest interactions is fi xed (D and E), 
the mean value is close to 14 days. If all activities are uncertain, then the uncertainty in the project 
duration is 3.4 days; if the uncertainty in activity C is removed, the uncertainty in the project 
duration is not signifi cantly reduced at 3.3 days. However, if the uncertainty in activities A and F is 
eliminated, the uncertainty in the project duration is reduced to 1.8 days, compared to 2.7 days if 
the uncertainty is removed in activities D and E. Th is fi nding confi rms that GSA (the Sobol meth-
od) can be used to identify the input variables and that if their uncertainties are reduced, then the 
uncertainty in the project duration is also reduced. Th e Sobol method can also be used to identify 
the input variables that do not aff ect the uncertainty in the project duration and can therefore be 
fi xed at their mean values for uncertainty analysis.

Th e fi nal decision on where to focus eff orts on reducing the uncertainty depends on these 
results and on other aspects, such as the associated cost, the availability of resources and the feasi-
bility of reducing uncertainty in the activity duration.

TABLE 02. Uncertainty analysis in conventional project duration for various scenarios and 
uniform distribution for the input variables
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that if their uncertainties are reduced, then the uncertainty in the project duration is also 
reduced. The Sobol method can also be used to identify the input variables that do not affect 
the uncertainty in the project duration and can therefore be fixed at their mean values for 
uncertainty analysis. 
The final decision on where to focus efforts on reducing the uncertainty depends on these 
results and on other aspects, such as the associated cost, the availability of resources and the 
feasibility of reducing uncertainty in the activity duration. 
 

Table 2. Uncertainty analysis in conventional project duration for various scenarios and 

uniform distribution for the input variables 

 Project duration 
No activity fixed A and F fixed D and E fixed C fixed 

Minimum 12.41 13.15 12.74 12.53 
1st Quartile 13.76 13.97 13.67 13.80 
Median 14,16 14.19 14.03 14.20 
Mean 14.16 14.19 14.02 14.19 
3rd Quartile 14.52 14.47 14.39 14.59 
Maximum 15.82 14.97 15.43 15.83 
  

 

For the log-normal distribution, different results are observed, as shown in Figure 6b. The 
uncertainty in the time duration of activities B, D, E and F is the most relevant to the 
uncertainty in the conventional project duration. The difference in the behavior indicates that 
the characterization of the uncertainty in the input variables is a key component of uncertainty 
analysis. Furthermore, the magnitude (variation) of uncertainty is more influential than the 
form of uncertainty for the project duration. 
Table 3 shows the results of Monte Carlo simulations for various scenarios with 1,000 calls to 
the model using a log-normal distribution for the input variables. The second column shows 
the results of the project duration when considering the uncertainty in all activities. Columns 
two, three and four show the results of the project duration when the duration of activities B 
and D, A, and C, and B, D, and E, respectively is fixed (in its average value). If all activities 
are uncertain, then the uncertainty in the project duration is 15.57 days; if the uncertainty in 
activities A and C is removed, the uncertainty in the project duration is not significantly 
reduced at 14.57 days. However, if the uncertainty in activities B, D, and E is eliminated, the 
uncertainty in the project duration is reduced to 10.05 days.  
 

Table 3. Uncertainty analysis for conventional project duration for various scenarios and log-

normal distribution for the input variables 

 Project duration 
No activity fixed B and D fixed A and C fixed B, D, E fixed 

Minimum 10.19 11.76 10.43 11.28 
1st Quartile 14.23 13.93 14.01 13.59 
Median 15.07 14.89 15.30 14.36 
Mean 15.82 15.12 15.53 14.53 
3rd Quartile 17.20 16.07 16.80 15.28 
Maximum 25.76 25.94 25.00 21.33 
  

TABLE 03. Uncertainty analysis for conventional project duration for various scenarios and log-
normal distribution for the input variables 17 
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uncertainty in the conventional project duration. The difference in the behavior indicates that 
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the results of the project duration when considering the uncertainty in all activities. Columns 
two, three and four show the results of the project duration when the duration of activities B 
and D, A, and C, and B, D, and E, respectively is fixed (in its average value). If all activities 
are uncertain, then the uncertainty in the project duration is 15.57 days; if the uncertainty in 
activities A and C is removed, the uncertainty in the project duration is not significantly 
reduced at 14.57 days. However, if the uncertainty in activities B, D, and E is eliminated, the 
uncertainty in the project duration is reduced to 10.05 days.  
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 Project duration 
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the exception of the time factor CBA (see Figure 8a). Th is 
result is not surprising because CBA is the time factor 
with the most uncertainty. However, the eff ect of the 
BBA time factor is not as signifi cant despite having 
high uncertainty because the eff ect of CBA depends on 
the duration of activity B—whereas the eff ect of BBA 
depends on the duration of activity A (see equation 
4)—and because the duration of B is longer than the 
duration of activity A. If all activity durations and time 
factors have uncertainty, the uncertainty in the project 
duration is 4.1 days (based on Monte Carlo simula-
tions); if the input variables that most aff ect the project 
duration uncertainty are fi xed at their mean values 
(activities A, F, B, D and time factor CBA), the project 
duration uncertainty is reduced to 2.0 days, showing a 
signifi cant eff ect. If the duration of activities C and E is 
fi xed, then the project duration uncertainty is 4.0 days; 
i.e., its eff ect is marginal. Conversely, if the duration of 
activities A and F is fi xed, the uncertainty is 3.0 days; 
i.e., there is a signifi cant eff ect. Th ese simulations con-
fi rm that the Sobol method can identify which input 
variables in which to reduce uncertainty to reduce the 
uncertainty in the project duration. Th e Sobol method 
can also be used to identify the input variables that do 
not aff ect the uncertainty in the project duration and 
can therefore be fi xed at their mean values for uncer-
tainty analysis.

In the example of a natural overlap project du-
ration with a log-normal distribution for the input 
variables, the time factors have less eff ect on the 
uncertainty in the project duration, with the excep-
tion of time factors BCFD and BCFE (see Figure 8a). 
If the input variables (activity duration and time 
factor) with the highest Sobol indices are fi xed, the 
uncertainty in the project duration is reduced more 
signifi cantly than if the other input variables are 
fi xed. Th is is a result similar to that described for 
the previous cases.

Another application of the results obtained by 
applying GSA is uncertainty analysis. A possible 
analysis strategy is to perform an initial estimation 
of the distribution functions of the activity durations 
and overlap time factors and then use GSA to identify 
the most signifi cant input variables. Now, resources 
can be concentrated on characterizing the uncertain-
ty of these input variables, and a second uncertainty 
analysis can be performed with these improved 
uncertainty characterizations.

4.Case Study
In this section, a case study with 17 activities is 

analyzed. Th is example was presented by Shi and 
Blomquist (2012). Shi and Blomquist employed trian-
gular fuzzy numbers to describe the uncertainty of 

For the log-normal distribution, diff erent results are observed, as shown in Figure 6b. Th e un-
certainty in the time duration of activities B, D, E and F is the most relevant to the uncertainty in 
the conventional project duration. Th e diff erence in the behavior indicates that the characteriza-
tion of the uncertainty in the input variables is a key component of uncertainty analysis. Further-
more, the magnitude (variation) of uncertainty is more infl uential than the form of uncertainty for 
the project duration.

Table 3 shows the results of Monte Carlo simulations for various scenarios with 1,000 calls to the 
model using a log-normal distribution for the input variables. Th e second column shows the results 
of the project duration when considering the uncertainty in all activities. Columns two, three and 
four show the results of the project duration when the duration of activities B and D, A, and C, and B, 
D, and E, respectively is fi xed (in its average value). If all activities are uncertain, then the uncertainty 
in the project duration is 15.57 days; if the uncertainty in activities A and C is removed, the uncer-
tainty in the project duration is not signifi cantly reduced at 14.57 days. However, if the uncertainty in 
activities B, D, and E is eliminated, the uncertainty in the project duration is reduced to 10.05 days. 

In the example of a natural overlap project duration with an uniform distribution in the input 
variables, the time factors generally have less eff ect on the uncertainty in the project duration, with 
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the duration of activities and time factors. They used 
as a membership function a positive triangular fuzzy 
number F=(l,m,u):

               
x-1

m-1  ,1 ≤ x ≤ m

u(x) =    
u-x
u-m  ,m ≤ x ≤ u

                  0, otherwise

For the application of GSA, these fuzzy numbers 
are used as triangular distribution functions. The 
dependent relationships of information between the 
activities are shown by the off-diagonal element of 
matrix Bij in Figure 9. For example, the information 
predecessors of activity E are activities A, B and C. 
The duration of each activity is given in the diagonal 
element of matrix Bii. To quantify the complexity of 
this case study, Shi and Blomquist (2016) calculated 
the project order strength to be 0.48 by describing 
the project as a network diagram with 18 nodes. 
Figure 9 also gives the time factor of Bij; three fuzzy 
numbers were used (0.8,0.9,0.9), (0.6,0.7,0.8), and 
(0.4,0.5,0.6) with transformations in linguistic 
variables given by Shi and Blomquist as “required in-
formation that can be released after almost all of the 
work has been finished”, “required information that 
can be released after a large amount the work has 
been finished”, and “middle status”, respectively (Shi 
and Blomquist, 2016). The values of the time factor 
of Cij are as follows: CDA, CEB, CEC, CHE, CIF, CKG, CKI, 
CLI, CPC, CQP, CRJ, CRL, CRN, and CRQ have a fuzzy num-
ber of (0.1,0.1,0.2); CEA, CFC, CIE, CJG, CKH, CMA, CND, 
CNM, and CRK have a fuzzy number of (0.2,0.3,0.4); 
and CGD has a fuzzy number of (0.4,0.5,0.6). The 
transformation in linguistic variables of (0.1,0.1,0.2), 
(0.2,0.3,0.4), and (0.4,0.5,0.6) given by Shi and Blom-
quist is “a little work can be conducted before the in-
formation is released from its predecessor activity”, 
“some work can be conducted before the information 
is released from its predecessor activity”, and “mid-
dle status”, respectively.

The uncertainty analysis was performed as 
described previously for the simple example. There 
are 65 input variables: 17 activity durations, 24 Bij 
time factors, and 24 Cij time factors. Figure 10a shows 
the histogram of the project duration determined by 
Monte Carlo simulation with 100,000 model calls. 
The minimum, maximum, and mean values are 16.81, 
23.23 and 19.79, respectively, compared to 11.6, 27.4 
and 20.4 using fuzzy numbers (Shi and Blomquist, 
2012). This result is consistent with the observations 
for interval calculation (Gálvez et al., 2015); that is, 
interval calculation (and fuzzy numbers) overestimate 
the uncertainty in project duration.

Figures 11a and 11d display the box plot of the early 
start and early finish for this example. The results are 
consistent with the values given by the fuzzy numbers 
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Fig. 9. Overlap time factor for 𝐵𝐵!" represented by triangular functions (adapted from Shi and 

Blomquist, 2012) 

 

 

 

 

 

 

FIGURE 09. Overlap time factor for Bij represented by triangular functions 
(adapted from Shi and Blomquist, 2012)

FIGURE 10. Histogram for project duration. a) Uncertainty in all input variables; b) fifteen most 
influent input variables fixed at their m values; c) fifteen most influential input variables fixed at l 
values; and d) fifty least influential input variables fixed at their m values 
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Fig. 10. Histogram for project duration. a) Uncertainty in all input variables; b) fifteen most 
influent input variables fixed at their 𝑚𝑚 values; c) fifteen most influential input variables fixed 
at 𝑙𝑙 values; and d) fifty least influential input variables fixed at their 𝑚𝑚 values  
 
To demonstrate that these variables are the most influential, three scenarios are analyzed. In 
scenario 1, the 15 most influential input variables are fixed at their 𝑚𝑚 values, meaning that 
these variables can be controlled at that value. In scenario 2, the 15 most influential input 
variables are fixed at their 𝑙𝑙 values. Finally, in scenario 3, it is assumed that all variables, other 
than the first 15, can be fixed at their 𝑚𝑚 values, meaning that the uncertainty of these variables 
can be eliminated from the uncertainty analysis because they are not influential. Monte Carlo 
simulation was used with 100,000 model calls. 
Figure 10 shows the histogram of the project duration for these scenarios. Figures 10b 
(scenario 1) and 10c (scenario 2) show that the uncertainty in project duration can be 
eliminated if the values of the 15 most influential input variables are fixed. This result 
indicates that these variables are responsible for the uncertainty in the project duration and that 
the uncertainty in the other 50 input variables does not affect the project duration. Conversely, 
Figure 10d (scenario 3) shows that if the uncertainty in the last 50 input variables is eliminated, 
the uncertainty in the project duration is almost equal to the uncertainty in the project duration 
if uncertainty is considered in all variables (Figure 10a).  
 

(12)

FIGURE 11. Box plot for early start and early finish in the case study

22 
 

 
Fig. 11. Box plot for early start and early finish in the case study 
 
Figure 11 shows similar results for the early start and early finish uncertainty. Figures 11b and 
11e show that the uncertainties of the key activities are eliminated if the uncertainties of the 15 
most influential input variables are eliminated. Conversely, Figures 11c and 11f show that the 
uncertainty in the key activities is very similar if all input variables have uncertainty (Figures 
11a and 11d) or the uncertainty of the last 50 input variables is eliminated. 
In conclusion, it is demonstrated by exhaustion (from the 100,000 Monte Carlo simulation) 
that 1) the control of the uncertainty of the most influential input variables reduces the 
uncertainty in the key activities and the project duration, and 2) the uncertainty analysis can be 
performed using only the most influential input variables. 
 
5. Conclusion and final comments 
Uncertainty and sensitivity analyses have been applied to project duration using DSM-based 
scheduling, as proposed by Maheswari and Varghese. The characterization of the uncertainty is 
a key component of the uncertainty analysis of project duration. The type of distribution 
function does not play as important a role as the magnitude of the uncertainty. The project 
duration uncertainty follows a normal distribution if the magnitudes of the uncertainty in the 
input variables are moderate and is independent of whether the input variables follow uniform, 
normal, or log-normal distributions. Random sampling is sufficient because the model is 
simple and has low computational costs. A cumulative function for project duration is a good 
way to present the uncertainty to determine the probability that the project duration is equal to 
or less than a certain time. A box plot is a good way to present the uncertainty in the early start 
and the early finish of all (or groups of) activities.  
 
 
 
 
 

   
a) Early start, uncertainty in all variables b) Early start, scenario 1 c)  Early start, scenario 3 

   
d) Early finish, uncertainty in all variables e) Early finish, scenario 1 f) Early finish, scenario 3 

 

(Shi and Blomquist, 2012), but overestimation occurs as more calculation 
steps are needed. This overestimation happens because the probability that 
all variables have the minimum (or maximum) values decreases as more 
variables are involved. 

The Sobol-Jansen method was applied to identify the most influential 
input variables. The total cost was 2,010,000 model calls because there are 
65 input variables, and a sample size of 30,000 was used. Despite the large 
number of model calls, only a few minutes were needed in a notebook 
with an Intel® Core i7 processor because the model is very simple. Figure 

12 shows the total and first-order Sobol indices for the 20 most influential 
input variables. The other 45 input variables have Sobol indices equal to 
zero. There are nine and 12 input variables with total Sobol indexes greater 
than 0.01 and 0.001, respectively. The activity durations of activities A, 
D, and J and the time factors CJG, BJG, CGD, CRJ, BRJ, and BDA are the most 
influential input variables.

Fig. 10. Histogram for project duration. a) Uncertainty in all input varia-
bles; b) fifteen most influent input variables fixed at their m values; c) fifteen 
most influential input variables fixed at l values; and d) fifty least influential 
input variables fixed at their m values 

To demonstrate that these variables are the most influential, three sce-
narios are analyzed. In scenario 1, the 15 most influential input variables 
are fixed at their m values, meaning that these variables can be controlled 
at that value. In scenario 2, the 15 most influential input variables are fixed 
at their l values. Finally, in scenario 3, it is assumed that all variables, other 
than the first 15, can be fixed at their m values, meaning that the uncer-

tainty of these variables can be eliminated from the uncertainty analysis 
because they are not influential. Monte Carlo simulation was used with 
100,000 model calls.

Figure 10 shows the histogram of the project duration for these scenari-
os. Figures 10b (scenario 1) and 10c (scenario 2) show that the uncertainty in 
project duration can be eliminated if the values of the 15 most influential 
input variables are fixed. This result indicates that these variables are re-
sponsible for the uncertainty in the project duration and that the uncer-
tainty in the other 50 input variables does not affect the project duration. 
Conversely, Figure 10d (scenario 3) shows that if the uncertainty in the last 
50 input variables is eliminated, the uncertainty in the project duration is 
almost equal to the uncertainty in the project duration if uncertainty is 
considered in all variables (Figure 10a). 

Figure 11 shows similar results for the early start and early finish 
uncertainty. Figures 11b and 11e show that the uncertainties of the key 
activities are eliminated if the uncertainties of the 15 most influential 
input variables are eliminated. Conversely, Figures 11c and 11f show that 
the uncertainty in the key activities is very similar if all input variables 
have uncertainty (Figures 11a and 11d) or the uncertainty of the last 50 
input variables is eliminated.

In conclusion, it is demonstrated by exhaustion (from the 100,000 
Monte Carlo simulation) that 1) the control of the uncertainty of the most 
influential input variables reduces the uncertainty in the key activities and 
the project duration, and 2) the uncertainty analysis can be performed using 
only the most influential input variables.
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Fig. 12. Estimation of the Sobol-Jansen indices for the case study of the 20 most influent input 
variables 
 
The Sobol method has been proposed to be used for identification of the input variable 
uncertainty that is responsible for the uncertainty in project duration. The use of first-order and 
total Sobol sensitivity indices is a better option than using the second- or third-order Sobol 
sensitivity indices. The Sobol method has been shown to be adequate in the ranking and 
selection of the input variables. This ranking and selection of activities can be used to 
concentrate efforts and resources on a few activities to define their uncertainty or to control the 
duration of such key activities. The control or reduction of the uncertainty of the key activities 
durations was demonstrated to reduce uncertainty in the project duration. If resources are 
limited, approximate uncertainty can be assigned to the duration of activities and time factors. 
After the keys input variables are identified, resources can be allocated to estimate the 
uncertainty of the key input variables. In addition, the uncertainty analysis can be performed 
using only the influential input variables. 
 
Project scheduling includes several other aspects to be considered along with the sequence of 
activities. These aspects include resource allocation, budget setting, and organizational 
structure, among several others. From that perspective, identifying insignificant input variables 
can help simplify the problem by eliminating the uncertainty of those variables. Moreover, a 
project can contain many activities, perhaps thousands of activities, that may hinder the 
implementation of GSA. In such cases, it is advisable to identify milestones and divide the 
project into subprojects. Then, GSA can be applied to the project considering that each sub-
project is an activity, and GSA is applied to each sub-project individually. 
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