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This paper presents a method for determining and controlling variables which are critical to the desired duration of a project. The proposed method consists 
of four stages: 1) a Monte Carlo simulation of project scheduling using a dependency structure matrix (DSM), 2) the reduction of the number of input variables 
using an index based on the standardized regression coef�icient, 3) the determination and regionalization of critical variables using a modi�ied Monte Carlo Fil-
tering (mMCF) method, and 4) an evaluation of risk of the project duration under the regionalized conditions. The proposed method was applied to three case 
studies. Results show that the method could be helpful in scheduling projects to obtain the desired duration under uncertainty, identifying critical variables, 
and regionalizing the critical input variables.
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1. INTRODUCTION
---------------------
Projects in numerous industries are subject 
to many uncertainties attributable to several 
possible causes. For example, the durations of 
project activities are dependent on uncertain 
factors, and activity durations are therefore ran-
dom rather than deterministic variables (Carr, 
1979). This uncertainty can be attributed to an 
absence of knowledge about their values under 
de�inite circumstances (epistemic uncertainty) 
or the fact that the variable exhibits naturally 
random behavior (stochastic uncertainty). This 
uncertainty may affect the completion date of 
a project, which can translate into higher costs. 
For this reason, several studies have analyzed 
uncertainty in project planning (Herroelen and 
Leus, 2005). Most studies have performed un-
certainty analysis, i.e., analyzing the uncertainty 
behavior in project duration as a result of un-
certainty in the input variables. However, few 
studies have performed sensitivity analysis, i.e., 
identifying input variables that are responsible 
for the uncertainty in the output variable. 

The dependency structure matrix (DSM) has 
been used to represent projects, especially in 
cases in which there is interdependence be-
tween activities (Browning, 2001). The DSM 
has several applications in project manage-
ment. Maheswari and Varghese (2005) de-
veloped a methodology for determining pro-
ject duration using the DSM. They included 
projects with communication times between 
activities and projects with overlap between 
activities. More recently, Srour et al. (2013) ap-
plied the DSM to the planning of construction 
projects, including projects with overlap. How-
ever, the models of Maheswari and Varghese 
(2005) and the extension of Srour et al. (2013) 
are deterministic, i.e., they do not consider the 
uncertainty in the variables, which limits their 
application to real situations and construction 
projects in particular. Additionally, project risk 
management requires assessments of project 
duration and activity criticality (Yang, 2007).

The introduction of overlap in the DSM is im-
portant because a scheduler can accelerate a 
construction project by setting up overlapping 
activities. Activities are considered to be over-
lapping if two activities that are normally ex-
ecuted in sequence are performed in parallel, 

science and engineering studies. For example, 
some studies have involved model simpli�i-
cation and ef�icient calibration in the water 
productivity model AquaCrop (Vanuytrecht et 
al., 2014), determination of rate coef�icients of 
interest in combustion (Shannon et al., 2015), 
interpretation of biological experiment results 
(Jarret et al., 2015), analysis of urban water 
quality modelling (Vanrolleghem et al., 2015), 
design of mineral processes (Sepúlveda et al., 
2014), studies in probabilistic engineering 
design (Sathyanarayanamurthy and Chinnam, 
2009) and understanding the main sources 
of uncertainty affecting the risk of CO2 escape 
from the geological carbon storage (Gonza-
lez-Nicolas et al., 2015). Gálvez et al. (2015b), 
Gálvez and Capuz-Rizo (2016), and Gálvez et al. 
(2017) showed that GSA can be used to identi-
fy which input variable uncertainties (project 
duration and overlap factors) are in�luential/
non-in�luential in project duration uncertainty 
using the DSM. The authors used this informa-
tion to reduce project duration uncertainty by 
controlling the uncertainty of the in�luential 
input variables. Several GSA methods were 
compared and analyzed as a potential tool in 
project scheduling using the DSM. 

A different GSA problem is the identi�ication of 
the comparative importance (critical, impor-
tant, insigni�icant) of input variable uncertain-
ty in determining a speci�ic behavior of the out-
put variables. This type of problem is known 
as regionalized sensitivity analysis because it 
involves searching for input variables that are 
responsible for the output variables being in a 
region of interest (Saltelli et al., 2004). Monte 
Carlo Filtering (MCF) was developed for this 
purpose (Spear and Hornberger, 1980). The 
method consists in Monte Carlo simulation and 
in classifying the model output as “behavior” 
or “non-behavior”. The simulation results are 
used to determine whether the distribution 
functions of each input variable, in the “behav-
ior” and “non-behavior” data set, are identical 
(insigni�icant) or different (critical). MCF was 
used by Brockmann and Morgenroth (2010) 
to identify operating conditions that result in 
a desired bio�ilm system behavior. However, 
MCF yields better results for small models, 

with the successor starting before the end of the 
predecessor. Recently, Lim et al. (2014) present-
ed a method that identi�ies an optimal overlap 
rate between critical activities to provide a time-
cost trade-off analysis, hence reducing comple-
tion time and cost without allocating additional 
resources. It is important for the contractor to 
minimize the project completion time. There 
is a pressing need for the contractor to recog-
nize and achieve this objective. In response, re-
searchers have proposed various methods that 
can be classi�ied into optimization-based sched-
uling and concurrency-based scheduling.

Gálvez et al. (2012) adjusted the methodology 
proposed by Maheswari and Varghese to in-
clude uncertainty in the input variables. All vari-
ables were represented by grey numbers, which 
allowed for the calculation of project duration as 
a grey number. Shi and Blomquist (2012) later 
introduced fuzzy numbers into the Maheswari 
and Varghese procedure to represent uncer-
tainty in project planning. Recently, Gálvez et al. 
(2015a) represented the input variables in the 
Maheswari and Varghese model using distribu-
tion functions and studied the corresponding 
project duration behavior using Monte Carlo 
simulations. In that study, it was observed that 
project duration tends to have a normal distri-
bution, independent of the distribution function 
used to represent the input variables. Moreover, 
it was observed that the grey numbers tend to 
overestimate the uncertainty in project dura-
tion. All of these studies pertain to uncertainty 
analysis; that is, they involve determining the ef-
fect of the uncertainty of the input variables on 
the uncertainty of output variables.

Only few studies have been published on the 
application of global sensitivity analysis (GSA) 
to project planning and scheduling. GSA seeks 
to identify the input variables that are respon-
sible (in�luential) for the uncertainty of output 
variables. Therefore, GSA can be very useful 
in project management in the identi�ication of 
in�luential and non-in�luential input variables. 
This information can be used to reduce the 
size of models (by removing non-in�luential 
input variables) or to control the output var-
iable uncertainty (by controlling in�luential 
input variables), as demonstrated in several 
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typically those with fewer than 20 input variables (Saltelli, 2004). For 
this reason, Lucay et al. (2015) recently proposed reducing model size 
using the Sobol´ method (Sobol’, 1993) to eliminate non-in�luential input 
variables before using MCF. The authors applied the procedure for the 
identi�ication and regionalization of critical variables in chemical pro-
cesses. The identi�ication of the critical input variable uncertainty is very 
important when determining a speci�ic behavior of the project duration. 
To de�ine project goals, it is necessary to determine the range of feasible 
values of project duration, and knowing which variables are critical to 
obtain a desired project duration allows to control these variables in or-
der to reach the de�ined goal.

The objective of this research is the development of a method for identifying 
the input variables responsible for a certain behavior of the project dura-
tion. It is also shown that controlling or regionalizing these variables may 
increase the likelihood of the project duration being close to the desired 
value. This paper is divided in �ive sections, the �irst of which is the introduc-
tion. The second section presents the proposed methodology. This section is 
divided into four sub-sections, one for each stage of the method. Then, in the 
fourth section, three case studies are presented to validate and exemplify the 
methodology. Finally, conclusions are presented in section �ive.

2. PROPOSED METHODOLOGY
---------------------
As indicated above, the methodology consists of four stages: 1) a Monte 
Carlo simulation of project scheduling using the DSM, 2) the reduction of 
the number of input variables using an index based on the standardized 
regression coef�icient, 3) the determination and regionalization of critical 
variables using a modi�ied Monte Carlo Filtering method, and 4) an evaluation 
of the risk associated with project duration under the regionalized conditions.

--- 2.1 Simulation of project scheduling ---

This stage includes the uncertainty analysis based on a Monte Carlo sim-
ulation of project scheduling. This uncertainty analysis allows de�ining 
the desired (and undesired) behavior of the project duration. In this 
study, the method developed by Maheswari and Varghese (2005) and 
extended by Gálvez et al. (2015a) for the estimation of project duration 
with and without natural overlap between activities is used. However, 
other methods can be utilized to simulate project duration. In the meth-
od of Maheswari and Varghese, the dependence between activities, ac-
tivity duration, and overlap time factors are used to estimate the project 
duration. Here, the same models are used, but uncertainty is considered 
in all input variables. This method can be applied to both the tradition-
al (sequential: an activity starts once its predecessors are completed) 
method and the phased method (some overlap occurs between pairs of 
activities); however, the phased method is emphasized in this study be-
cause problems that require this method are more complex and several 
strategies can be used to control project duration. 

The project duration has been chosen as the output variable, but other 
variables such as early start, late start, early �inish, late �inish, and slack 
time can be considered as well. Therefore, the method of Maheswari and 
Varghese can be extended to include the calculation of late start, late �in-
ish, and slack time, as shown in appendix A.

The Maheswari and Varghese method uses the DSM to calculate project 
duration. The DSM is a square matrix containing a list of activities in the 
rows and columns in the same order. The order of activities in the rows 
and columns in the matrix indicates the sequence of execution. Values 
along the diagonal are the durations of the activities, and values along the 
off-diagonal cells indicate that these activities are information predeces-
sors, with activity inputs in the rows and activity outputs in the columns. 

For the sequential method, Gálvez et al. (2015a) proposed the following 
equations for the calculation of early start (ES), early �inish (EF) and pro-
ject duration (P) using the DSM:

(EF)i = (ES)i +Aii  0< i ≤ n   (1)

(ES)j = Max [(EF)i  ]  0< i ≤ n, 0< j ≤ n  (2)

P = Max [(EF)j ]  0< i ≤ n   (3)

Where j is the current activity (the activities are selected following the 
order given by the DSM), i indicates all of the immediate predecessors 
of j, Aii are the diagonal values of the DSM representing the duration of 
activity i, and n is the number of activities in the project. 

For natural overlap methods of project scheduling, Maheswari and Vargh-
ese introduced time factors. Two times factors are used: the time factor re-
lated to receiving information for the successor activity (given by the off-di-
agonal matrix values of matrix Bji ) and the time factor related to sending 
the information from the predecessor activity (represented by the off-diag-
onal values of matrix Cji ). See Fig. 1 for a graphic de�inition of Bji and Cji. The 
overlap considered by these factors is natural overlap (in contrast to forced 
overlap), and therefore, rework is not included. Values of 1 and 0 in Bji and 
Cji, respectively, indicate that overlap is not possible or allowed between 
these activities (and equations 4 to 6 became the equations 1 to 3). 

ule problem involves more than 20 uncertain input variables, then it will 
be necessary to reduce the number of uncertain variables. Gálvez and 
Capuz-Rizo (2016) assessed GSA methods for the identi�ication of in�lu-
ential and non-in�luential input variables in project scheduling using the 
DSM. They included scatterplots, partial correlation coef�icient, partial 
rank correlation coef�icient, standardized regression coef�icient (SRC), 
standardized rank regression coef�icient, Morris (1991), and Sobol’ (1993) 
methods. Based on the results obtained by Gálvez and Capuz-Rizo, (2016) 
the SRC, Morris and Sobol’ methods can be used to identify and sort input 
factors that affect the uncertainty in project duration. However, the Sobol’ 
method features a higher computational cost and is more dif�icult to im-
plement. The SRC and Morris methods also allow for identifying the direc-
tion of the correlation between project duration and a given input factor. 
However, Morris method does not consider the form (only the range) of the 
input variable distribution function. On the other hand, the SRC method 
has a low computational cost, it is easy to implement, and it considers the 
form and range of the input variable distribution function. Therefore, the 
SRC method is used here to reduce the input variables. Please note that 
although the SRC, Morris, and Sobol’ methods allow for sensitivity analysis 
over the full range of variable uncertainties, they do not allow for studying 
or identifying regionalized behaviors. 

The foundation of the SRC method is performing a Monte Carlo simula-
tion of the model. The number of simulations must be suf�iciently high to 
obtain stable evaluations of the coef�icients, which can be accomplished 
by trial and error. The space of activity durations and overlap factors (xj 
variables) is explored by random sampling from the distribution function 
of these variables. A multivariate linear model relating the project dura-
tion (y variable) to the input variables (xj ) is then �itted. This is

y ̂     =b0+∑n
(j=1) bj  xj     (7)

The linear regression coef�icients (bj ) are not useful for sensitive analysis 
in our case because activity duration and overlap factors have different 
units and because they do not integrate information on the distribution 
allocated to these variables. The SRCj valued are obtained by normalizing 
the linear regression coef�icient (bj ) associated with the input variable xj : 

      (8)

where Sj and S are the sample standard deviations for the input variable 
xj and output variable y, respectively. 

These SRCj values provide a valid measure of sensitivity if the coef�icient 
of determination, R2, is greater than 0.7 because R2 is a measure of the 
degree to which the regression can match the observed data. Speci�ically, 
a value of R2close to 1 indicates that the regression model is effective in 
accounting for the uncertainty of y, and a value of R2 close to 0 indicates 
that the regression model is not successful in representing the uncertain-
ty of y. On the other hand, based on the work of Gálvez and Capuz-Rizo 
(2016), the SRCj values provide a valid measure for GSA in project sched-
uling using DSM.  

The absolute value of SRC delivers a measure of variable importance. The 
uncertainty of a variable has a greater effect on the uncertainty in the 
project duration (the variable is more in�luential) if its absolute value 
of SRC is greater than the absolute value of another variable. The SRC 

also provides a measure of the direction of the relationship between two 
variables. A positive value indicates that both y and xj are decreasing or 
increasing together, whereas a negative value means that the input and 
output factors tend to move in opposite directions. SRC can be used to 
reduce model size by classifying input variables as in�luential or non-in-
�luential. The non-in�luential variables are then �ixed to nominal values. 

To reduce the number of input variables, the following steps are proposed. 
First, the SRCj is determined for all the input variables. Then, the normal-
ized absolute values of SRC are calculated using the following equation:

Normalized absolute value of SRCj=    |SRCj |  (9)

              
∑k |SRCk |

Note that the summation of the normalized absolute SRC is equal to 1. 
Then, the normalized absolute value of SRC is assorted from the higher 
to the lower value. The larger the value of normalized absolute SRC is, the 
greater the effect of uncertainty of that variable on the uncertainty of the 
project duration. Next, the cumulative of normalized absolute SRCj (NSj) 
is determined by using:

NSj=∑ j (i=1)      Normalized absolute value of SRCi  (10)

Where the normalized absolute value of activity i is greater than the val-
ue of activity j. The NSj values indicate that the �irst j input variables are 
responsible for 100 NSj % of the uncertainty of the project duration. A 
reduction of the number of input variables is then proposed by consid-
ering the variables that are responsible for 97% of the uncertainty of the 
project duration.

--- 2.3 Determination and regionalization of critical variables ---

The determination and regionalization of critical variables involves iden-
tifying the input variables (critical variables) that are responsible for a 
speci�ic behavior of the project duration. In the identi�ication of these 
critical variables, only the variables identi�ied as in�luential in the previ-
ous stage are considered. All non-in�luential variables are �ixed to their 
nominal value. To determine and regionalize these critical variables, a 
modi�ied MCF method is developed. In the MCF method (Spear and Horn-
berger, 1980), the following criterion is used for the output variables: the 
results are divided into two subsets, one with the values of the input vari-
ables that are responsible for a desired behavior of the model output (set 
R) and another set with the values of the input variables that provide the 
unwanted behavior (set R ,̅ i.e., for the Xi  variable of a particular model, 
the number of elements of Xi that are part of set R is n (# (Xi/R)=n ) and 
the number of elements of Xi that are part of set R  ̅is m (# (Xi/R )̅=m) 
such that n+m=N, where N is the total number of simulations, i=1,…,k, 
and k is the total number of input variables in the model. However, this 
division in two subsets usually generates subsets of unequal number of 
elements that reduces the statistical power of the method. In addition, 
Spear et al. (1994) indicated that the fraction of R is hardly larger than 
5 % of the total number of simulations for models with input variables 
over 20, implying a lack in statistical power. Therefore, in this work the 
desired behavior of the model output (set R) and the unwanted behavior 
(set R ̅) are selected so that n and m are roughly equal (and n+m<N), and 
n and m are selected so that both values are greater than 10% of the total 

(EF)i = (ES)i +Aii  0< i ≤ i ≤ i n   (1)

(ES)j = Max [(EF)i  ]  0< i ≤ i ≤ i n, 0< j ≤ j ≤ j n  (2)

P = Max [(EF)j ]  0< i ≤ i ≤ i n   (3)

     (8)
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Graphic definition of 𝐵𝐵!" and 𝐶𝐶!". Graphic description of equation 4. 
Fig. 1. Graphic description of natural overlap matrix and equations. 

The natural overlap project duration is estimated as follows (Maheswari and Varghese, 
2006): 
 

(𝐸𝐸𝐸𝐸)! = 𝑀𝑀𝑀𝑀𝑀𝑀[(𝐸𝐸𝐸𝐸)! + 𝐵𝐵!" 𝐵𝐵!! − 𝐶𝐶!" 𝐶𝐶!!]                0 < 𝑖𝑖 ≤ 𝑛𝑛, 0 < 𝑗𝑗 ≤ 𝑛𝑛  (4) 

(𝐸𝐸𝐸𝐸)! = (𝐸𝐸𝐸𝐸)! + 𝐵𝐵!!                0 < 𝑖𝑖 ≤ 𝑛𝑛  (5) 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑀𝑀𝑀𝑀[(𝐸𝐸𝐸𝐸)!]                 0 < 𝑗𝑗 ≤ 𝑛𝑛  (6) 

	

𝐵𝐵!! and 𝐶𝐶!! are the diagonal values of the DSM (duration of activity). Fig. 1 explains the 
equation 4. A short calculation example is presented in Appendix A. 

2.2 Reduction of input variables 
The quality of MCF results increases with few input variables. If the schedule problem 
involves more than 20 uncertain input variables, then it will be necessary to reduce the 
number of uncertain variables. Gálvez and Capuz-Rizo (2016) assessed GSA methods for 
the identification of influential and non-influential input variables in project scheduling 
using the DSM. They included scatterplots, partial correlation coefficient, partial rank 
correlation coefficient, standardized regression coefficient (SRC), standardized rank 
regression coefficient, Morris (1991), and Sobol’ (1993) methods. Based on the results 
obtained by Gálvez and Capuz-Rizo, (2016) the SRC, Morris and Sobol’ methods can be 
used to identify and sort input factors that affect the uncertainty in project duration. 
However, the Sobol’ method features a higher computational cost and is more difficult to 
implement. The SRC and Morris methods also allow for identifying the direction of the 
correlation between project duration and a given input factor. However, Morris method 
does not consider the form (only the range) of the input variable distribution function. On 
the other hand, the SRC method has a low computational cost, it is easy to implement, and 
it considers the form and range of the input variable distribution function. Therefore, the 
SRC method is used here to reduce the input variables. Please note that although the SRC, 
Morris, and Sobol’ methods allow for sensitivity analysis over the full range of variable 
uncertainties, they do not allow for studying or identifying regionalized behaviors.  

FIGURE 01. Graphic description of natural overlap matrix and equations.

The natural overlap project duration is estimated as follows (Maheswari 
and Varghese, 2006):

(ES)j= Max [(ES)i+Bji  Bii- Cji  Cjj ]  0< i ≤ n, 0< j ≤ n        (4)

(EF)i= (ES)i + Bii    0< i ≤ n                   (5)

natural overlap project duration =Max [(EF)j ] 0< i ≤ n                   (6)

Bii and Cii are the diagonal values of the DSM (duration of activity). Fig. 
1 explains the equation 4. A short calculation example is presented in 
Appendix A.

--- 2.2 Reduction of input variables ---

The quality of MCF results increases with few input variables. If the sched-

6	
	

The foundation of the SRC method is performing a Monte Carlo simulation of the model. 
The number of simulations must be sufficiently high to obtain stable evaluations of the 
coefficients, which can be accomplished by trial and error. The space of activity durations 
and overlap factors (𝑥𝑥! variables) is explored by random sampling from the distribution 
function of these variables. A multivariate linear model relating the project duration (𝑦𝑦 
variable) to the input variables (𝑥𝑥!) is then fitted. This is 

 

𝑦𝑦 = 𝑏𝑏! + 𝑏𝑏!!
!!! 𝑥𝑥!                    (7) 

 

The linear regression coefficients (𝑏𝑏!) are not useful for sensitive analysis in our case 
because activity duration and overlap factors have different units and because they do not 
integrate information on the distribution allocated to these variables. The 𝑆𝑆𝑆𝑆𝑆𝑆! valued are 
obtained by normalizing the linear regression coefficient (𝑏𝑏!) associated with the input 
variable 𝑥𝑥!:  

 

𝑆𝑆𝑆𝑆𝑆𝑆! = 𝑏𝑏!
!!
!

                                    (8) 

 

where 𝑆𝑆! and 𝑆𝑆 are the sample standard deviations for the input variable 𝑥𝑥! and output 
variable 𝑦𝑦, respectively.   

These 𝑆𝑆𝑆𝑆𝑆𝑆! values provide a valid measure of sensitivity if the coefficient of determination, 
𝑅𝑅!, is greater than 0.7 because 𝑅𝑅! is a measure of the degree to which the regression can 
match the observed data. Specifically, a value of 𝑅𝑅!close to 1 indicates that the regression 
model is effective in accounting for the uncertainty of 𝑦𝑦, and a value of 𝑅𝑅! close to 0 
indicates that the regression model is not successful in representing the uncertainty of 𝑦𝑦. On 
the other hand, based on the work of	 Gálvez	 and Capuz-Rizo (2016), the 𝑆𝑆𝑆𝑆𝑆𝑆! 	 values 
provide a valid measure for GSA in project scheduling using DSM.   
The absolute value of SRC delivers a measure of variable importance. The uncertainty of a 
variable has a greater effect on the uncertainty in the project duration (the variable is more 
influential) if its absolute value of SRC is greater than the absolute value of another 
variable. The SRC also provides a measure of the direction of the relationship between two 
variables. A positive value indicates that both 𝑦𝑦 and 𝑥𝑥! are decreasing or increasing 
together, whereas a negative value means that the input and output factors tend to move in 
opposite directions. SRC can be used to reduce model size by classifying input variables as 
influential or non-influential. The non-influential variables are then fixed to nominal 
values.  

To reduce the number of input variables, the following steps are proposed. First, the 𝑆𝑆𝑅𝑅𝑅𝑅! is 
determined for all the input variables. Then, the normalized absolute values of SRC are 
calculated using the following equation: 

. 
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simulations ( n>0.1 N and m>0.1 N ). This is then called the 
modi�ied Monte Carlo Filtering method (mMCF).

If the input variable Xi  is a key or critical variable to the be-
havior of the model output, the performance of its density 
functions in R and R ̅, i.e., fR (Xi/R) and fR ̅  (Xi/R ̅), will be signif-
icantly different. On the other hand, if the density functions 
are not signi�icantly different, then input variable Xi  is not a 
critical variable (insigni�icant) to the behavior of the model 
output. This procedure is carried out for each input variable. 
The density functions of two samples can be compared using 
the Kolmogorov-Smirnov (KS) test. The KS statistic quanti-
�ies the distance between the distribution functions of two 
samples. The null distribution of this statistic is calculated 
under the null hypothesis, Ho, that the two density functions 
fR (Xi/R) and fR  ̅ (Xi/R )̅ are identical and the alternative hy-
pothesis, H1, that the two density functions are dissimilar:

Ho: f (Xi/R) = f ( Xi / R ̅ )

H1: f (Xi/R) ≠ f ( Xi/R ̅ )

The test is de�ined as follows:

Di= sup ‖ FR (Xi/R) - FR ̅  ( Xi/R ̅ )‖  

where F is the cumulative probability function and sup rep-
resents the supremum of ‖FR (Xi/R) - FR  ̅ (Xi/R  ̅)‖, which is 
greater than or equal to all values of ‖ FR (Xi/R) - FR ̅  (Xi/R ̅ )‖ .

The decision criterion is as follows: If Di ≤ Dα , then accept 
Ho , and if Di > Dα , then reject Ho , where P(reject Ho / Ho is 
true)=P(Di  > Dα ) = α.

This type of decision is typically made based on p-value. The 
p-value is the probability that, if the null hypothesis were 
true, the KS Di  statistic would be as large as or larger than 
the observed value. That is, p-value =P(Di>Dα  / Ho is true). 
Therefore, the smaller the p-value is, the more evidence for 
rejecting the null hypothesis there is. If the null hypothesis is 
rejected, then the alternative hypothesis is accepted. Usually, 
if p ≤ 0.05 the null hypothesis is rejected, but here the p-val-
ues proposed by Saltelli et al. (2014) are used to determine 
whether the input variable is critical or not (reject or accept 
the null hypothesis): If p-values < 0.01, then the variable is 
critical; if 0.01 ≤ p-values ≤0.1, then the variable is important, 
and if p-values ≥ 0.1, the variable is insigni�icant.

Once the critical variables are identi�ied, the input variable 
values that produce the desired performance in the model 
output (set R) can be analyzed to regionalize or identify tar-
get values for the critical variables. 

2.4. Evaluation of risk of the project duration under the region-
alized conditions.

Our objective is to identify the values of the activity duration 
and/or overlap factor that allows the desired behavior of the 
project duration to be obtained. This objective can be met by 

observing the behavior or values of the critical variables in the set R. After de�ining 
these values, the risk of obtaining the expected values of project duration must be ana-
lyzed, which can be accomplished by Monte Carlo simulation with the critical variables 
in the de�ined values and the other variables with the original uncertainties. One clearly 
desired behavior of the project duration is to compress the schedule. In the literature, 
three strategies have been used to compress a schedule (Carr, 1979). Fig. 2a illustrates 
a time-cost trade-off analysis that makes use of optimization-based scheduling. This 
strategy reduces project duration by assigning additional resources and/or cost. Fig. 
2b demonstrates concurrency-based scheduling, which reduces duration by over-
lapping predecessor and successor activities without assigning additional resources. 
Both strategies (accelerating and overlapping activities) can be used simultaneously, 
as shown in Fig. 2c. By performing project scheduling using the DSM, mMCF and re-
gionalization of the input variables, all previous strategies can be used to compress the 
schedule. If the acceleration of activities is desired, then uncertainty in activity dura-
tion must be considered, and equations 1 to 3 are used to model project duration. On 
the other hand, if the overlapping of activities is to be considered, uncertainty in the 
overlap factors, deterministic values for activity duration, and equations 4 to 6 must 
be used. Finally, if both accelerating and overlapping activities are to be considered, the 
uncertainties in all input variables are considered jointly using equations 4 to 6.

two scenarios are considered for illustration.

Scenario 1. Reducing the risk of late delivery.

The third step in the method is the determination and re-
gionalization of critical variables by the modi�ied Monte 
Carlo �iltering. All 20 input variables are considered to deter-
mine which have the greatest in�luence on whether the pro-
ject duration exceeds 19.51 (third quartile). This procedure 
reduces the risk of late delivery of the project. Because it is 
desirable to avoid a project duration equal to or above 19.51, 
sets R and R ̅  are de�ined as follows:

R={x / 18.70≤ project duration(x)  <19.51, x ∈E}

R ̅={x / 19.51≤ project duration(x), x ∈E}

where project duration(x) is the project duration at point x 
and E is a space formed by the uncertainties of 20 twenty 
input variables considered. In the set R, the lower bound is 
the mean value of the project duration. mMCF was applied 
by taking the uncertainty ranges presented in Fig. 2 and con-
sidering project duration as the output variable. The density 
functions of sets R and R ̅ associated with each variable were 
compared using the Kolmogorov-Smirnov test. The results 
are displayed in Table 1, which shows that there are 13 crit-
ical variables that affect the desired behavior of the project 
duration, 4 insigni�icant variables that do not affect the de-
sired behavior of the project duration, and 3 important var-

R={xR={xR={  / 18.70≤ project duration(x / 18.70≤ project duration(x x / 18.70≤ project duration(x / 18.70≤ project duration( )  <19.51, x)  <19.51, x x ∈E}x ∈E}x

R ̅={xR ̅={xR ̅={  / 19.51≤ project duration(x / 19.51≤ project duration(x x / 19.51≤ project duration(x / 19.51≤ project duration( ), x), x x ∈E}x ∈E}x
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successor activities without assigning additional resources. Both strategies (accelerating 
and overlapping activities) can be used simultaneously, as shown in Fig. 2c. By performing 
project scheduling using the DSM, mMCF and regionalization of the input variables, all 
previous strategies can be used to compress the schedule. If the acceleration of activities is 
desired, then uncertainty in activity duration must be considered, and equations 1 to 3 are 
used to model project duration. On the other hand, if the overlapping of activities is to be 
considered, uncertainty in the overlap factors, deterministic values for activity duration, and 
equations 4 to 6 must be used. Finally, if both accelerating and overlapping activities are to 
be considered, the uncertainties in all input variables are considered jointly using equations 
4 to 6.   
 

a) Acceleration of activities 

 

2 days 

reduction 

→ 

 

b) Overlapping of activities 

 

2 days 

overlap 

→ 

 

c) Acceleration and overlapping of activities 

 

1 day 

reduction 

and 1 day 

overlap 

→  

Fig. 2. Strategies for compressing a schedule 

As described in the following section, mMCF and Monte Carlo simulation were 
implemented in the R software (R Core Team, 2013) and SRC was implemented in the R 
‘sensitivity’ package (Pujol et al., 2014). The Monte Carlo simulation, the SRC, and the 
mMCF need to define a sample size. There is no rule for such definition; therefore, in this 
work the number of simulations required was determined so the results would not change 

FIGURE 02. Strategies for compressing a schedule

with six activities and 20 input variables, as presented by Gálvez et al. (2015b). The 
focus of this example is the regionalization of the critical variables, and the reduction 
of the number of input variables is not considered. The second case study considers 
a project with ten activities and 40 input variables, as presented by Maheswari and 
Varghese (2005). The focus of this example is the reduction of input variables. The 
third case study considers a road pavement project with 26 activities presented by 
Yang (2007). In the �irst two case studies, accelerating and overlapping activities are 
involved, and in the third case study only an acceleration activity is involved. In the 
�irst two case studies only uniform distribution functions are considered, but in the 
third case study uniform and discrete distribution functions are considered for the 
input variables. These types of distribution functions are used because they represent 
alternative values of these input variables to obtain the target project duration. 

--- 3.1 Case 1: Gálvez et al. case study ---

This example was presented by Gálvez et al. (2015b) but some changes were intro-
duced in the input factor to better describe the method proposed here. The project 
has six activities, and the Bij and Cij matrices are presented in Fig. 3. In Fig. 3, U(a,b) 
represents a uniform distribution between the lower bound a and the upper bound b. 
Values along the diagonal (Bii and Cii) are the activity durations, and values along the 
off-diagonal (Bij and Cij) are the overlap time factors. For example, U(3,5) in BAA indi-
cates that activity A has an uncertain duration of U(3,5); U(0.8,1.0) in BCA denotes that 
A can drive the required information to C at the end of U(0.8,1.0) times its duration; 
and U(0.0,0.2) in CCA denotes that activity C needs information from A, but not at the 
beginning of activity C, instead at U(0.0,0.2) of the time of its duration. Although this 
example has only six activities, it is not a simple example because the interdepend-
ence between the activities and the level of overlap can affect the behavior and the 
effect of each activity on the project duration. Based on the mean values of the activi-
ty durations and mean values of the factor times, the natural overlap project duration 
is estimated to be 18 days (Fig. 4). Additionally, it can be shown (see Appendix A) 
that all activities, with the exception of activity C, are part of the critical path, but it is 
not possible to known which overlap factors are also important for the critical path. 
The total �loat time of activity C is 0.3. Because the activity duration of C is U(4,6), it 
can be inferred that C can also be critical because of its uncertainty. The objective is 
to identify the critical input variables that control the project duration between given 
values. For all the Monte Carlo simulations and for all the mMCFs a sample of 10,000 
and 6,000 points were used respectively. These samples, as indicated before, were 
determined by trial and error so the results would not change with a change in the 
random sample chosen.

The �irst step of the method is the simulation of project scheduling using the DSM; 
this process involves equations 4 to 6 and the information in Fig. 3. Monte Carlo sim-
ulation for the project duration yields a minimum value of 14.08, a �irst quartile of 
17.87, a mean of 18.70, a third quartile of 19.51, and a maximum of 23.80. Thus, 
given the potential range of values for activity duration and overlap factors (uniform 
distribution), the project duration can take values between 14.08 and 23.8. The mean 
value (18.7) is greater than the value estimated using the mean values of activity 
durations and factor times (18.0) because the early start of activities D and F is a 
function of the behavior of activities B-C, and D-E, and their overlap. 

The second step of the method is the reduction in the number of input variables using 
GSA methods. However, this problem features 20 input variables (6 activity durations 
and 14 overlap time factors), which is why reducing the number of input variables 
may not be necessary and therefore not included here.

The third and fourth steps depend on the aim de�ined for the project duration. Here, 

FIGURE 03. DSM showing the uniform distribution of duration of activities and 
time factors of information transfer between activities.

FIGURE 04. Project scheduling with mean values of the input variables.
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the project duration yields a minimum value of 14.08, a first quartile of 17.87, a mean of 
18.70, a third quartile of 19.51, and a maximum of 23.80. Thus, given the potential range of 
values for activity duration and overlap factors (uniform distribution), the project duration 
can take values between 14.08 and 23.8. The mean value (18.7) is greater than the value 
estimated using the mean values of activity durations and factor times (18.0) because the 
early start of activities D and F is a function of the behavior of activities B -C, and D-E, and 
their overlap.  

 A B C D E F 
A U(3,5)      
B U(0.7,1.0) U(5,7)     
C U(0.8,1.0)  U(4,6)    
D  U(0.8,1.0) U(0.8,1.0) U(6,8)   
E  U(0.8,1.0)   U(6,8)  
F    U(0.8,1.0) U(0.8,1.0) U(4,6) 

a) Time factor of processor activities (𝐵𝐵!")  
 A B C D E F 

A U(3,5)      
B U(0.0,0.3) U(5,7)     
C U(0.0,0.2)  U(4,6)    
D  U(0.0,0.2) U(0.0,0.2) U(6,8)   
E  U(0.0,0.2)   U(6,8)  
F    U(0.0,0.2) U(0.0,0.2) U(4,6) 

b) Time factor of receiving information (𝐶𝐶!")  
Fig. 3. DSM showing the uniform distribution of duration of activities and time factors of 
information transfer between activities. 

 

	

Fig. 4. Project scheduling with mean values of the input variables. 
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F	Ho: f (Xi/R) = f ( Xi / R ̅ )

H1: f (Xi/R) ≠ f ( Xi/R ̅ )

Di= sup ‖ FR (XR (XR i/R) - FR ̅  ( Xi/R ̅ )‖  

As described in the following section, mMCF and Monte Carlo simulation were im-
plemented in the R software (R Core Team, 2013) and SRC was implemented in the R 
‘sensitivity’ package (Pujol et al., 2014). The Monte Carlo simulation, the SRC, and the 
mMCF need to de�ine a sample size. There is no rule for such de�inition; therefore, in 
this work the number of simulations required was determined so the results would 
not change with a variation in the random sample chosen. This was performed by 
trial and error; therefore, its size may not be optimal (minimum size).

3. CASE STUDIES
---------------------
The method is applied to three case studies. The �irst case study schedules a project 
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Table 1: Modified Monte Carlo filtering results and classification of input variables for scenarios 1 
and 2  

Scenario 1  Scenario 2 

Input factor D p-values Input factor 
is  Input factor D p-values Input factor 

is 
𝐵𝐵!! 0.2121 0.0000 critical  𝐵𝐵!! 0.3892 0.0000 critical 
𝐵𝐵!! 0.1268 0.0000 critical  𝐵𝐵!! 0.1943 0.0059 critical 
𝐵𝐵!!  0.0263 0.5230 insignificant  𝐵𝐵!!  0.2318 0.0005 critical 
𝐵𝐵!! 0.1003 0.0000 critical  𝐵𝐵!! 0.1346 0.1221 insignificant 
𝐵𝐵!!  0.0759 0.0000 critical  𝐵𝐵!!  0.1341 0.1246 insignificant 
𝐵𝐵!! 0.1885 0.0000 critical  𝐵𝐵!! 0.3159 0.0000 critical 
𝐵𝐵!" 0.0989 0.0000 critical  𝐵𝐵!" 0.1839 0.0108 important 
𝐵𝐵!" 0.0361 0.1656 insignificant  𝐵𝐵!" 0.1448 0.0786 important 
𝐵𝐵!" 0.0542 0.0072 critical  𝐵𝐵!" 0.2000 0.0042 critical 
𝐵𝐵!"  0.0176 0.9290 insignificant  𝐵𝐵!"  0.0799 0.7083 insignificant 
𝐵𝐵!" 0.0614 0.0015 critical  𝐵𝐵!" 0.1089 0.3190 insignificant 
𝐵𝐵!" 0.0815 0.0000 critical  𝐵𝐵!" 0.2977 0.0000 critical 
𝐵𝐵!"  0.0785 0.0000 critical  𝐵𝐵!"  0.1685 0.0249 important 
𝐶𝐶!" 0.1461 0.0000 critical  𝐶𝐶!" 0.2152 0.0016 Critical 
𝐶𝐶!" 0.0183 0.9070 insignificant  𝐶𝐶!" 0.1469 0.0714 Important 
𝐶𝐶!" 0.0430 0.0585 important  𝐶𝐶!" 0.1456 0.0756 Important 
𝐶𝐶!"  0.0520 0.0114 important  𝐶𝐶!"  0.1878 0.0086 Critical 
𝐶𝐶!" 0.0569 0.0041 critical  𝐶𝐶!" 0.0855 0.6255 insignificant 
𝐶𝐶!" 0.1133 0.0000 critical  𝐶𝐶!" 0.1353 0.1186 insignificant 
𝐶𝐶!"  0.0397 0.0985 important  𝐶𝐶!"  0.0804 0.7012 insignificant 
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Fig. 5. Precedence network in the case study 1. 

Additionally, the regionalization of the critical variables can be analyzed to obtain the 
desired behavior of the project duration. However, because there are many critical 
variables, it is difficult to identify the regions of the sets 𝑅𝑅 and 𝑅𝑅. Therefore, only some 
variables can be regionalized. For example, in Table 1, the input variables with the highest 
values of 𝐷𝐷 are the durations of activities A and F, and the overlap factor 𝐶𝐶!". Let us 
assume that it is desired to increase the duration of activity A (𝐵𝐵!! > 4.07) for some reason. 
The region of these variables that allows for the determination of the chosen project’s 
duration can thus be studied. To this end, all variables can be fixed to the mean values of 
set 𝑅𝑅, and only the uncertainty of these input variables is considered. Fig.s 6a and 6b show 
the regionalization of the A and F activity durations; it is clear that the lowest values of the 
A and F activity durations have better chances of yielding the desired behavior. 
Furthermore, it is possible to increase the duration of activity A if the duration of activity F 
is decreased. Figs. 6c and 6d show the regionalization of the durations of activities A and F 
and overlap factor 𝐶𝐶!". Fig. 6c indicates that there are several combinations of duration 
values for activities A and F, and an overlap factor 𝐶𝐶!" that can be used to obtain the 
desired behavior  For example if the duration of activities A and F are equal to 5, then an 
overlap factor 𝐶𝐶!" over 0.20 is required. As another example, note that it is possible to 
increase the duration of activity A if the duration of activity F is decreased and/or the 
overlap factor 𝐶𝐶!" is increased.   
 

TABLE 01. Modifi ed Monte Carlo fi ltering results and classifi cation of input variables for scenarios 1 and 2

TABLE 02. Uncertainty analysis in project duration for various scenarios.

FIGURE 05. Precedence network in the case study 1.

FIGURE 06. Regionalization of A and B activity durations and C_BA for scenario 1

FIGURE 07. Monte Carlo simulation of project duration for case study 1.

iables that may affect the desired behavior of the project duration. The important 
variables are in an intermediate position and therefore can or cannot be considered 
critical. If these variables are not considered, the risk of late delivery may increase. 
One way to consider this situation is by analyzing the cumulative probability func-
tions of sets R and R .̅ These cumulative probability functions are shown in Appen-
dix B. It can be observed that the difference between the two cumulative probability 
functions for all important variables is not signi�icant, and we will therefore consider 
only the critical variables.

The mean values of the critical variables obtained in set R can be used to obtain the 
desired behavior of the project duration (18.70≤ project duration <19.51). These 
values are BAA = 4.07, BBB = 6.06, BDD = 7.07, BEE = 7.02, BFF = 5.10, BBA = 0.856, BDB = 
0.902, BEB = 0.903, BFD = 0.905, BFE = 0.902, CBA = 0.141, CEB = 0.098, and CFD = 0.098. 
The non-critical variables can take any values in the uniform distribution that repre-
sent their uncertainties. Thus, the critical variables must be controlled to have values 
close to the mean values. If the values are the expected ones, they are close to the 
mean values of the activities in the critical path; however, there are surprise CDB and 
CFE variables that are not critical variables. Fig. 5 highlights the critical variables for 
scenario 1; note that the arrows in the arc do not denote direction but the overlap 
factors that are critical.

Additionally, the regionalization of the critical variables can be analyzed to obtain the 

desired behavior of the project duration. However, because 
there are many critical variables, it is dif�icult to identify the 
regions of the sets R and R .̅ Therefore, only some variables 
can be regionalized. For example, in Table 1, the input vari-
ables with the highest values of D are the durations of activ-
ities A and F, and the overlap factor CBA. Let us assume that it 
is desired to increase the duration of activity A (BAA > 4.07) 
for some reason. The region of these variables that allows for 
the determination of the chosen project’s duration can thus 
be studied. To this end, all variables can be �ixed to the mean 
values of set R, and only the uncertainty of these input varia-
bles is considered. Fig.s 6a and 6b show the regionalization 
of the A and F activity durations; it is clear that the lowest 
values of the A and F activity durations have better chances 
of yielding the desired behavior. Furthermore, it is possible 
to increase the duration of activity A if the duration of activ-
ity F is decreased. Figs. 6c and 6d show the regionalization 
of the durations of activities A and F and overlap factor CBA. 
Fig. 6c indicates that there are several combinations of du-
ration values for activities A and F, and an overlap factor CBA 
that can be used to obtain the desired behavior. For example 
if the duration of activities A and F are equal to 5, then an 
overlap factor CBA over 0.20 is required. As another example, 
note that it is possible to increase the duration of activity A 
if the duration of activity F is decreased and/or the overlap 
factor CBA is increased.

The fourth stage is the evaluation of risk of the project du-
ration under the regionalized conditions. Let us assume that 
the mean values of set R is used; therefore, for the purpose 
of verifying that these decisions are correct, Monte Carlo 
simulations are performed. Fig. 7a shows the histogram 
and cumulative probability function for the project duration 
when uncertainty is considered in all input factors. The �igure 
shows that project duration can take values between 14.08 
and 23.80 (see also Table 2), and the probability that the pro-
ject duration does not exceed 19.51 is 75%. Fig. 7b shows 
the results obtained when the critical variables are �ixed at 
the mean values of set R. The probability that the project du-
ration does not exceed 19.51 is now greater than 99% (also 
see Table 2) (or the probability of the project duration ex-
ceeding 19.51 is 1%.), which is achieved by setting the criti-
cal variables to the mean values in set R. In further analysis, 
Monte Carlo simulation was also performed for the opposite 
case. Speci�ically, the values of important and insigni�icant 
variables were �ixed at their mean values in set R (which are 
almost equal to the set R  ̅because they have the same dis-
tribution), and the uncertainty in the critical variables was 
considered. The results show that considering uncertainty in 
project duration is almost the same as considering uncertain-
ty in all variables. In conclusion, controlling the critical input 
variables allows for controlling the project duration between 
the desired values.
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a) Regionalization of A and F activity durations 
for set 𝑅𝑅. 

b) Regionalization of A and F activity durations 
for set 𝑅𝑅. 

  
c) Regionalization of A and F activity durations 
and 𝐶𝐶!" for set 𝑅𝑅. 

d) Regionalization of A and F activity durations 
and 𝐶𝐶!" for set 𝑅𝑅. 

 

Fig. 6. Regionalization of A and B activity durations and 𝐶𝐶!" for scenario 1 

 
 The fourth stage is the evaluation of risk of the project duration under the regionalized 
conditions. Let us assume that the mean values of set 𝑅𝑅 is used; therefore, for the purpose 
of verifying that these decisions are correct, Monte Carlo simulations are performed. Fig. 
7a shows the histogram and cumulative probability function for the project duration when 
uncertainty is considered in all input factors. The figure shows that project duration can 
take values between 14.08 and 23.80 (see also Table 2), and the probability that the project 
duration does not exceed 19.51 is 75%. Fig. 7b shows the results obtained when the critical 
variables are fixed at the mean values of set 𝑅𝑅. The probability that the project duration 
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does not exceed 19.51 is now greater than 99% (also see Table 2) (or the probability of the 
project duration exceeding 19.51 is 1%.), which is achieved by setting the critical variables 
to the mean values in set 𝑅𝑅. In further analysis, Monte Carlo simulation was also performed 
for the opposite case. Specifically, the values of important and insignificant variables were 
fixed at their mean values in set 𝑅𝑅 (which are almost equal to the set 𝑅𝑅 because they have 
the same distribution), and the uncertainty in the critical variables was considered. The 
results show that considering uncertainty in project duration is almost the same as 
considering uncertainty in all variables. In conclusion, controlling the critical input 
variables allows for controlling the project duration between the desired values. 
Scenario 2. Compressing the schedule for case study 1 

This scenario examines which input variables are critical for keeping the project duration 
between 15.0 and 16.0, thereby compressing the schedule. Considering this objective, let 
sets 𝑅𝑅 and 𝑅𝑅 be defined as follows: 

𝑅𝑅 = 𝑥𝑥 / 15.0 ≤  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥  < 16.0, 𝑥𝑥 ∈ 𝐸𝐸  

𝑅𝑅 = 𝑥𝑥 / 16.0 ≤  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥  < 18.0, 𝑥𝑥 ∈ 𝐸𝐸  

	 	
a) All input factors with uncertainty 

  
b) Critical input factors at their mean values in set 𝑅𝑅, scenario 1 
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c) Critical and selected important input factors at their mean values in set 𝑅𝑅, scenario 2 

Fig. 7. Monte Carlo simulation of project duration for case study 1. 

	

	

	

Table 2. Uncertainty analysis in project duration for various scenarios. 

 Project duration 
No activity fixed Scenario 1  Scenario 2   

Minimum 14.08 18.39 14.39  
1st Quartile 17.87 18.39 15.79  
Median 18.68 18.49 16.16  
Mean 18.70 18.61 16.18  
3rd Quartile 19.51 18.73 16.54  
Maximum 23.80 20.69 18.22  
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use the full range of values greater than 16 in set 𝑅𝑅 to clearly identify input variables that 
are responsible for behavior in restricted regions. The same procedure applied to scenario 1 
was used. The results are shown in Table 1, which shows that there are eight critical 
variables that affect the studied behavior of the project duration, seven insignificant 
variables that do not affect the behavior of the project duration, and five important variables 
that may affect the behavior of the project duration. The cumulative probability functions of 
all input variables are shown in Appendix B. It can be observed that the difference between 
the two cumulative probability functions (sets 𝑅𝑅 and 𝑅𝑅) for important variables 𝐵𝐵!", 𝐵𝐵!", 
𝐶𝐶!", and 𝐶𝐶!" is moderate, and the variables may therefore may be considered control 
variables. Additionally, the critical variables are not necessarily the same as those in 
scenario 1. 
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the mean values of the critical variables obtained in set 𝑅𝑅 can be used. These values are as 
follows: 𝐵𝐵!! = 3.33, 𝐵𝐵!! = 5.62, 𝐵𝐵!!  = 4.67, 𝐵𝐵!! = 4.37, 𝐵𝐵!" = 0.803, 𝐵𝐵!" = 0.878, 𝐵𝐵!" = 
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c) Critical and selected important input factors at their mean values in set 𝑅𝑅, scenario 2 

Fig. 7. Monte Carlo simulation of project duration for case study 1. 
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scenario 1. 
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Scenario 2. Compressing the schedule for case study 1.

This scenario examines which input variables are critical for keeping the 
project duration between 15.0 and 16.0, thereby compressing the sched-
ule. Considering this objective, let sets R and R ̅  be de�ined as follows:

R={x / 15.0≤ project duration(x)  <16.0, x ∈E}

R ̅={x / 16.0≤ project duration(x)  <18.0, x ∈E}

where E and project duration(x) have the same meaning as before. It is 
advisable not to use the full range of values greater than 16 in set R  ̅to 
clearly identify input variables that are responsible for behavior in re-
stricted regions. The same procedure applied to scenario 1 was used. 
The results are shown in Table 1, which shows that there are eight criti-
cal variables that affect the studied behavior of the project duration, sev-
en insigni�icant variables that do not affect the behavior of the project 
duration, and �ive important variables that may affect the behavior of the 
project duration. The cumulative probability functions of all input var-
iables are shown in Appendix B. It can be observed that the difference 
between the two cumulative probability functions (sets R and R ̅) for im-
portant variables B_BA, B_FE, C_CA, and C_DB is moderate, and the var-
iables may therefore may be considered control variables. Additionally, 
the critical variables are not necessarily the same as those in scenario 1.

To obtain the desired behavior of the project duration (15≤ project dura-
tion <16), the mean values of the critical variables obtained in set R can 
be used. These values are as follows: BAA = 3.33, BBB = 5.62, BCC = 4.67, BFF 
= 4.37, BBA = 0.803, BDB = 0.878, BFD = 0.859, BFE = 0.874, CBA = 0.217, CCA 
= 0.119, CDB = 0.121 and CDC = 0.128. The other input variables can take 
any values in the uniform distributions that represent their uncertain-
ties. Fig. 5 shows that the critical variables change with the target value 
of the project duration.

As in the previous scenario, to verify that these decisions are correct, 
and to evaluate the risk of the project duration under the regionalized 
conditions, Monte Carlo simulations were performed. In Fig. 7a, which 
shows the project duration when uncertainty is considered in all input 
factors, the probability that the project duration does not exceed 16 is 
approximately 5%. Fig. 7c shows the results when the critical variables, 
and the selected important variables are �ixed at their mean values from 
set R. The probability that the project duration does not exceed 16 is now 
40%, and the probability that it does not exceed 16.54 is 75% (also see 
Table 2). In conclusion, the control of the critical input variables allows 
for improvement in the probability of obtaining the desired behavior of 
the project duration; however, there is a limit on the degree to which the 
probability can be improved, and the desired behaviors cannot always be 
achieved through the mean values of the critical variables in set R. It is 
necessary to perform Monte Carlo simulations to identify the likelihood 
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of achieving the desired behavior. Additionally, the critical/
important/insigni�icant variables depend on the desired 
behavior of the project duration. The identi�ication of insig-
ni�icant variables can help reduce the overall project cost be-
cause less expensive resources can be used for insigni�icant 
activities without affecting the project duration.

--- 3.2 Case 2: Maheswari and Varghese case study. ---

This case study proposed by Maheswari and Varghese (2005) 
considers ten activities. Maheswari and Varghese used deter-
ministic values for all of the input parameters. Here, we use 
a uniform distribution function to represent the uncertain-
ty in all input variables because we want to determine the 
values of activity duration and overlap factors that allow for 
the desired project duration to be obtained. In other words, 
the uniform distribution is the range of values that the input 
variables can take based on our manipulation. In Table 3, the 
activity duration for each activity is presented together with 
the dependence between activities. Table 4 presents the uni-
form distribution of time factors Bji and time factors Cji . This 
problem has 40 input variables: 10 activity durations and 30 
overlap time factors. For all the Monte Carlo, the SRCs and 
the mMCFs simulations a sample of 4,000, 400 and 12,000 
points were used respectively. 

The �irst step of the method is the simulation of project 

scheduling using the DSM with equations 4 to 6 and the information in Tables 3 and 
4. Monte Carlo simulation yields a minimum value of 27.29 for the project duration, 
a �irst quartile of 31.05, a mean of 32.08, a third quartile of 33.07, and a maximum of 
37.14. Therefore, the required project duration must be between these values, given 
the uncertainties in the input values. The project duration follows a normal distribu-
tion even though the input variables follow a uniform distribution.

The second step of the method is the reduction in the number of input variables using 
GSA methods. This problem has 40 input variables; thus, it is necessary to reduce 
the input variables. The results of applying SRC method are presented in Table 5. 
The third column shows the absolute value of SRC for each input variable, the fourth 
column shows the cumulative and normalized absolute values of SRC (NS), and the 
�ifth column shows the ranking of importance: The larger the value of absolute SRC is, 
the greater the effect of uncertainty of that variable on the uncertainty of the project 
duration becomes. In the second column, negative SRC values mean that the input 
variable and the project duration have different signs. Only the �irst 20 input varia-
bles will be considered when applying mMCF. The NS values (fourth column) indicate 
that these top 20 variables can explain 97% of the uncertainty in project duration. 

The third and fourth steps depend on the target de�ined for the project duration; 
again, two scenarios are considered for illustration. In the �irst scenario, the aim is to 
keep the project duration between the mean and the third quartile (reduce the risk of 
been late). Sets R and R ̅  are de�ined as follows:

R={x / 32.08≤ project duration(x)  <33.07, x ∈E}

R ̅={x / 33.07≤ project duration(x), x ∈E}

where E is a space formed by the uncertainties of the 20 input variables considered, 
whereas project duration(x) is the project duration at point x. The mMCF simulations 
identi�ied 13 critical variables (BAA, BCC, BDD, BBB, BEE, BII, BHH, BFC, BBD, BEB, BHI, CBD, CEB, 
CIE, CHI) that affect the desired behavior of the project duration. Fig. 8 shows the prec-
edence network for this case study and highlights the critical variables. Unsurpris-
ingly, all variables are in the critical path, but the duration of activities D and F and 
certain overlap factors are not critical despite lying on the critical path.

Fig. 9 shows several cumulative probability functions for project duration obtained 
by Monte Carlo simulations. Fig. 9a corresponds to the case in which all 40 input 
variables have uncertainties. The probability that the project duration does not 
exceed 33.07 is 75%. Fig. 9b corresponds to the case in which the uncertainty is 
only considered in the critical variables (the other 27 input variables are �ixed in 
their mean values). The cumulative probability functions of Fig. 9a and 9b are very 
similar, which shows that uncertainties in critical variables are responsible for the 
uncertainty in project duration. Fig. 9c shows the Monte Carlo results obtained 
when the critical variables are �ixed at the mean values obtained in set R and the 
other 27 input variables have uncertainty. The probability that the project duration 
does not exceed 33.07 is 80%, and the uncertainty has been reduced relative to that 
shown Fig. 9a. It is clear that controlling the critical variables can help obtain the 
desired project duration. 

In the second scenario, the aim is to keep the project duration below the �irst quar-
tile (compressing the schedule). Sets R and R ̅  are de�ined as follows:

R={x / project duration(x)  <31.05, x ∈E}

R ̅={x / 31.05≤ project duration(x)  <32.08, x ∈E}

In this scenario, the same procedure used in previous scenarios is applied, and 15 

critical variables (BAA, BCC, BDD, BBB, BEE, BII, BHH, BFC, BBD, BEB, BHI, CBD, CEB, CIE, CHI) that 
affect the desired behavior of the project duration are identi�ied. Fig. 8 shows that 
the durations of all activities in the critical path are critical with the exception of F 
activity, but only the overlaps between B and E, I and E and I and H are critical. Fig. 9a 
shows the uncertainty in all input variables, and the probability that the project du-
ration does not exceed 31.05 is 25%. Fig. 9d shows the Monte Carlo results when the 
critical variables are �ixed at the mean values obtained in set R in scenario 2 and the 
other 25 input variables have uncertainty. The probability that the project duration 
does not exceed 31.05 is 99%. In this situation, the results are excellent, and it can 
be concluded that by controlling the 15 critical input variables, the desired project 
duration can be obtained with a probability of 99%.

--- 3.3 Road pavement project. ---

This case study considers a road pavement project (a highway of 3.53 km long,) with 
26 activities, as described by previous authors (Yang, 2007; Ioannou and Martinez, 
1998; Brand et al., 1964). The construction work for this highway is distributed in 
two sections (one from station 42 to station 100 and another from station 100 to 
station 158) based on the position of the balance points for cut and �ill (earthmov-TABLE 04. Uniform distribution of time factors Bji and time factors Cji

R={xR={xR={  / project duration(x / project duration(x x / project duration(x / project duration( )  <31.05, x)  <31.05, x x ∈E}x ∈E}x

R ̅={xR ̅={xR ̅={  / 31.05≤ project duration(x / 31.05≤ project duration(x x / 31.05≤ project duration(x / 31.05≤ project duration( )  <32.08x)  <32.08x , x)  <32.08, x)  <32.08  ∈E}, x ∈E}, x

R={x R={x R={ / 32.08≤ project duration(x/ 32.08≤ project duration(x/ 32.08≤ project duration( )  <33.07, x)  <33.07, x x ∈E}x ∈E}x

R ̅={x / 33.07≤ project duration(x/ 33.07≤ project duration(x/ 33.07≤ project duration( ), x), x x ∈E}x ∈E}x
TABLE 05. Standardized regression coeffi  cients (SRC) for case study 2.
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duration between the mean and the third quartile (reduce the risk of been late). Sets 𝑅𝑅 and 
𝑅𝑅 are defined as follows: 

𝑅𝑅 = 𝑥𝑥 / 32.08 ≤  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥  < 33.07, 𝑥𝑥 ∈ 𝐸𝐸  

𝑅𝑅 = 𝑥𝑥 / 33.07 ≤  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 , 𝑥𝑥 ∈ 𝐸𝐸  

where 𝐸𝐸 is a space formed by the uncertainties of the 20 input variables considered, 
whereas 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥  is the project duration at point 𝑥𝑥.  The mMCF simulations 
identified 13 critical variables (𝐵𝐵!!, 𝐵𝐵!! , 𝐵𝐵!!, 𝐵𝐵!!, 𝐵𝐵!!, 𝐵𝐵!!, 𝐵𝐵!", 𝐵𝐵!", 𝐵𝐵!", 𝐶𝐶!", 𝐶𝐶!", 𝐶𝐶!", 
𝐶𝐶!") that affect the desired behavior of the project duration. Fig. 8 shows the precedence 
network for this case study and highlights the critical variables. Unsurprisingly, all 
variables are in the critical path, but the duration of activities D and F and certain overlap 
factors are not critical despite lying on the critical path. 

Fig. 9 shows several cumulative probability functions for project duration obtained by 
Monte Carlo simulations. Fig. 9a corresponds to the case in which all 40 input variables 
have uncertainties. The probability that the project duration does not exceed 33.07 is 75%. 
Fig. 9b corresponds to the case in which the uncertainty is only considered in the critical 
variables (the other 27 input variables are fixed in their mean values). The cumulative 
probability functions of Fig. 9a and 9b are very similar, which shows that uncertainties in 
critical variables are responsible for the uncertainty in project duration. Fig. 9c shows the 
Monte Carlo results obtained when the critical variables are fixed at the mean values 
obtained in set 𝑅𝑅 and the other 27 input variables have uncertainty. The probability that the 
project duration does not exceed 33.07 is 80%, and the uncertainty has been reduced 
relative to that shown Fig. 9a. It is clear that controlling the critical variables can help 
obtain the desired project duration.  
Table 5. Standardized regression coefficients (SRC) for case study 2. 

Input 
Factor SRC | SRC | NS Ranking  Input 

Factor SRC | SRC | NS Ranking 

𝐵𝐵!" 0.388 0.388 0.10 1  𝐶𝐶!"  -0.021 0.021 0.98 21 

𝐵𝐵!!  0.360 0.360 0.19 2  𝐵𝐵!" 0.021 0.021 0.98 22 

𝐵𝐵!! 0.293 0.293 0.26 3  𝐶𝐶!" -0.010 0.010 0.99 23 

𝐵𝐵!! 0.289 0.289 0.34 4  𝐵𝐵!" -0.007 0.007 0.99 24 

𝐵𝐵!! 0.269 0.269 0.40 5  𝐵𝐵!" 0.006 0.006 0.99 25 

𝐶𝐶!" -0.245 0.245 0.47 6  𝐵𝐵!" 0.005 0.005 0.99 26 

𝐵𝐵!! 0.238 0.238 0.53 7  𝐶𝐶!"  0.005 0.005 0.99 27 

𝐵𝐵!" 0.234 0.234 0.58 8  𝐵𝐵!" -0.005 0.005 0.99 28 

𝐵𝐵!!  0.214 0.214 0.64 9  𝐶𝐶!" -0.005 0.005 0.99 29 

𝐶𝐶!" -0.187 0.187 0.69 10  𝐵𝐵!! 0.003 0.003 1.00 30 

𝐵𝐵!! 0.177 0.177 0.73 11  𝐶𝐶!" 0.003 0.003 1.00 31 

𝐶𝐶!" -0.163 0.163 0.77 12  𝐶𝐶!" 0.003 0.003 1.00 32 
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𝐵𝐵!"  0.136 0.136 0.81 13  𝐶𝐶!" 0.002 0.002 1.00 33 

𝐵𝐵!"  0.130 0.130 0.84 14  𝐵𝐵!" 0.002 0.002 1.00 34 

𝐶𝐶!" -0.121 0.121 0.87 15  𝐵𝐵!" 0.002 0.002 1.00 35 

𝐵𝐵!" 0.108 0.108 0.90 16  𝐵𝐵!"  -0.001 0.001 1.00 36 

𝐶𝐶!"  -0.093 0.093 0.92 17  𝐶𝐶!" 0.001 0.001 1.00 37 

𝐵𝐵!" 0.078 0.078 0.94 18  𝐵𝐵!" 0.001 0.001 1.00 38 

𝐶𝐶!" -0.072 0.072 0.96 19  𝐶𝐶!" 0.000 0.000 1.00 39 

𝐵𝐵!! 0.060 0.060 0.97 20  𝐵𝐵!!  0.000 0.000 1.00 40 
 

Fig. 8 Precedence network for case study 2.   

 

 
In the second scenario, the aim is to keep the project duration below the first quartile 
(compressing the schedule). Sets 𝑅𝑅 and 𝑅𝑅 are defined as follows: 

𝑅𝑅 = 𝑥𝑥 /  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥  < 31.05, 𝑥𝑥 ∈ 𝐸𝐸  

𝑅𝑅 = 𝑥𝑥 / 31.05 ≤  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥  < 32.08, 𝑥𝑥 ∈ 𝐸𝐸  

In this scenario, the same procedure used in previous scenarios is applied, and 15 critical 
variables (𝐵𝐵!!, 𝐵𝐵!! , 𝐵𝐵!!, 𝐵𝐵!!, 𝐵𝐵!!, 𝐵𝐵!!, 𝐵𝐵!!, 𝐵𝐵!" , 𝐵𝐵!", 𝐵𝐵!", 𝐵𝐵!", 𝐶𝐶!!, 𝐶𝐶!", 𝐶𝐶!", 𝐶𝐶!") that 
affect the desired behavior of the project duration are identified. Fig. 8 shows that the 
durations of all activities in the critical path are critical with the exception of F activity, but 
only the overlaps between B and E, I and E and I and H are critical. Fig. 9a shows the 
uncertainty in all input variables, and the probability that the project duration does not 
exceed 31.05 is 25%. Fig. 9d shows the Monte Carlo results when the critical variables are 
fixed at the mean values obtained in set 𝑅𝑅 in scenario 2 and the other 25 input variables 
have uncertainty. The probability that the project duration does not exceed 31.05 is 99%. In 
this situation, the results are excellent, and it can be concluded that by controlling the 15 
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affect the desired behavior of the project duration are identified. Fig. 8 shows that the 
durations of all activities in the critical path are critical with the exception of F activity, but 
only the overlaps between B and E, I and E and I and H are critical. Fig. 9a shows the 
uncertainty in all input variables, and the probability that the project duration does not 
exceed 31.05 is 25%. Fig. 9d shows the Monte Carlo results when the critical variables are 
fixed at the mean values obtained in set 𝑅𝑅 in scenario 2 and the other 25 input variables 
have uncertainty. The probability that the project duration does not exceed 31.05 is 99%. In 
this situation, the results are excellent, and it can be concluded that by controlling the 15 FIGURE 09. Cumulative distribution functions for several scenarios in case 

study 2. a) All input variables with uncertainty; b) non-critical variables for 
scenario 1 fi xed at their mean values; c) critical variables for scenario 1 

fi xed at their mean values in set R; d) critical variables for scenario 2 fi xed 
at their mean values in set R.
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critical input variables, the desired project duration can be obtained with a probability of 
99%. 
 

  

a) All input variables b) Non-critical variables for scenario 1 

  

c) Critical variables for scenario 1 d) Critical variables for scenario 2 

Fig. 9. Cumulative distribution functions for several scenarios in case study 2. a) All input variables 
with uncertainty; b) non-critical variables for scenario 1 fixed at their mean values; c) critical 
variables for scenario 1 fixed at their mean values in set 𝑅𝑅; d) critical variables for scenario 2 fixed 
at their mean values in set 𝑅𝑅. 
 

3.3 Road pavement project. 
This case study considers a road pavement project (a highway of 3.53 km long,) with 26 
activities, as described by previous authors (Yang, 2007; Ioannou and Martinez, 1998; 
Brand et al., 1964). The construction work for this highway is distributed in two sections 
(one from station 42 to station 100 and another from station 100 to station 158) based on 
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3.3 Road pavement project. 
This case study considers a road pavement project (a highway of 3.53 km long,) with 26 
activities, as described by previous authors (Yang, 2007; Ioannou and Martinez, 1998; 
Brand et al., 1964). The construction work for this highway is distributed in two sections 
(one from station 42 to station 100 and another from station 100 to station 158) based on 

TABLE 03. List of activities with the uniform distribution of duration time 
(Bii  or Aii) (Gálvez et al., 2015a).
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0.859, 𝐵𝐵!" = 0.874, 𝐶𝐶!" = 0.217, 𝐶𝐶!" = 0.119, 𝐶𝐶!" = 0.121 and 𝐶𝐶!"  = 0.128. The other 
input variables can take any values in the uniform distributions that represent their 
uncertainties. Fig. 5 shows that the critical variables change with the target value of the 
project duration. 
As in the previous scenario, to verify that these decisions are correct, and to evaluate the 
risk of the project duration under the regionalized conditions, Monte Carlo simulations 
were performed. In Fig. 7a, which shows the project duration when uncertainty is 
considered in all input factors, the probability that the project duration does not exceed 16 
is approximately 5%. Fig. 7c shows the results when the critical variables, and the selected 
important variables are fixed at their mean values from set 𝑅𝑅. The probability that the 
project duration does not exceed 16 is now 40%, and the probability that it does not exceed 
16.54 is 75% (also see Table 2). In conclusion, the control of the critical input variables 
allows for improvement in the probability of obtaining the desired behavior of the project 
duration; however, there is a limit on the degree to which the probability can be improved, 
and the desired behaviors cannot always be achieved through the mean values of the critical 
variables in set 𝑅𝑅. It is necessary to perform Monte Carlo simulations to identify the 
likelihood of achieving the desired behavior. Additionally, the 
critical/important/insignificant variables depend on the desired behavior of the project 
duration. The identification of insignificant variables can help reduce the overall project 
cost because less expensive resources can be used for insignificant activities without 
affecting the project duration. 
 

Activity 
Identification 

Previous 
Information Duration, U(min, max) 

A - U(5.1, 6.7) 
B D U(6.7,9.7) 
C A U(5.6,8.1) 
D A, F U(3.2,4.6) 
E B U(7.7,10.0) 
F A, C U(0.5,1.4) 
G F, J U(1.4,2.7) 
H I U(8.8,11.3) 
I D, G, E U(3.9,6.0) 
J F, B U(2.3,3.6) 

 

The first step of the method is the simulation of project scheduling using the DSM with 
equations 4 to 6 and the information in Tables 3 and 4. Monte Carlo simulation yields a 
minimum value of 27.29 for the project duration, a first quartile of 31.05, a mean of 32.08, 
a third quartile of 33.07, and a maximum of 37.14. Therefore, the required project duration 
must be between these values, given the uncertainties in the input values. The project 
duration follows a normal distribution even though the input variables follow a uniform 
distribution. 
The second step of the method is the reduction in the number of input variables using GSA 
methods. This problem has 40 input variables; thus, it is necessary to reduce the input 
variables. The results of applying SRC method are presented in Table 5. The third column 
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G F, J U(1.4,2.7) 
H I U(8.8,11.3) 
I D, G, E U(3.9,6.0) 
J F, B U(2.3,3.6) 

 

The first step of the method is the simulation of project scheduling using the DSM with 
equations 4 to 6 and the information in Tables 3 and 4. Monte Carlo simulation yields a 
minimum value of 27.29 for the project duration, a first quartile of 31.05, a mean of 32.08, 
a third quartile of 33.07, and a maximum of 37.14. Therefore, the required project duration 
must be between these values, given the uncertainties in the input values. The project 
duration follows a normal distribution even though the input variables follow a uniform 
distribution. 

The second step of the method is the reduction in the number of input variables using GSA 
methods. This problem has 40 input variables; thus, it is necessary to reduce the input 
variables. The results of applying SRC method are presented in Table 5. The third column 
shows the absolute value of SRC for each input variable, the fourth column shows the 
cumulative and normalized absolute values of SRC (NS), and the fifth column shows the 
ranking of importance: The larger the value of absolute SRC is, the greater the effect of 
uncertainty of that variable on the uncertainty of the project duration becomes. In the 
second column, negative SRC values mean that the input variable and the project duration 
have different signs. Only the first 20 input variables will be considered when applying 
mMCF. The NS values (fourth column) indicate that these top 20 variables can explain 
97% of the uncertainty in project duration.  
Table 4: Uniform distribution of time factors 𝐵𝐵!" and time factors 𝐶𝐶!" 

J i 
Time Factors 

𝐵𝐵!"  
Time Factors 

 𝐶𝐶!"  
U(min, max) U(min, max) 

C A U(0.74,0.84) U(0.07,0.16) 
F A U(0.92,1.00) U(0.00,0.12) 
F C U(0.53,0.64) U(0.26,0.36) 
D A U(0.75,0.84) U(0.05,0.14) 
D F U(0.63,0.74) U(0.15,0.25) 
B D U(0.83,0.94) U(0.31,0.44) 
J F U(0.85,0.94) U(0.14,0.25) 
J B U(0.88,1.00) U(0.00,0.10) 
G F U(0.42,0.54) U(0.42,0.54) 
G J U(0.92,1.00) U(0.26,0.36) 
E B U(0.79,0.94) U(0.07,0.17) 
I D U(0.52,0.64) U0.14,0.25) 
I G U(0.75,0.84) U(0.45,0.67) 
I E U(0.92,1.00) U(0.00,0.10) 
H I U(0.59,1.00) U(0.34,0.47) 

 
The third and fourth steps depend on the target defined for the project duration; again, two 
scenarios are considered for illustration. In the first scenario, the aim is to keep the project 

  j
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ing). In each section, the quantity of cut matches the quantity of �ill. Table 6 shows 
the names of the activities, the distribution functions of activity durations, and di-
rect predecessors. Fig. 10 shows the precedence network for the road pavement. 
Ioannou and Martinez (1998) used traditional three-point estimates (optimistic, 
most-likely, pessimistic) for activity durations; they assumed that the necessary re-
sources are available and, therefore, that there is no correlation between activities. 
Yang (2007) used triangular (minimum, most likely, maximum), uniform and dis-
crete distribution functions for the duration of activities and assumed that there are 
correlations between activities because some activities are performed by the same 
crew. However, these studies were related to uncertainty analysis. The objective here 
is different: Given a desired project duration behavior, the critical variables and their 
values or regions must be identi�ied. Therefore, the distribution functions for activity 
duration (Table 6) represent the potential duration of these activities when different 
resources (crew, equipment and technologies) are used. Uniform distribution func-
tion indicates that the activity duration can take any value between the minimum 
and maximum values. Discrete distribution function indicates that only some values 

are possible. Here, all discrete values have the same proba-
bility; therefore, the duration of activity 6 can take 4, 8, 10, 
or 16 days, each with a probability of 25%. Additionally, it is 
assumed that the necessary resources are available, i.e., that 
there is no correlation between activities. For all the Monte 
Carlo simulations, all the SRCs, and all the mMCFs a sample 
of 10,000, 2,500 and 12,500 points were used respectively.

First, project scheduling is simulated using the DSM using 
equations 1 to 3 because in this case there is not overlap be-
tween activities. Monte Carlo simulation gives a minimum 
value of 44.30, a �irst quartile of 79.77, a mean of 89.94, a 
third quartile of 99.41, and a maximum of 143.75 days for 
project duration. This information yields the number of days 
and the probability of a given project duration based on the 
potential values of activity durations.

The second step of the method is the reduction in the number 
of input variables using the SRC method for global sensitivity 
analysis. The results obtained by applying SRC are presented 
in Table 7. The third column shows the absolute value of SRC 
for each input variable, the fourth column shows the cumu-
lative and normalized absolute values of SRC (NS), and the 
�ifth column shows the ranking of importance: The larger the 
value of absolute SRC is, the greater the effect of uncertain-
ty of that variable on the uncertainty of the project duration 
becomes. Only the �irst 18 input variables will be considered 
when applying mMCF because these 18 input variables ex-
plain over 97% of the uncertainties in the project duration 
(see NS values). Fig. 10 also highlights the in�luential/non-in-
�luential activity durations.

The third and fourth steps depend on the aim de�ined for the 
project duration; again, two scenarios are considered for illus-
tration: scenario 1 reducing the risk of late delivery for the road 
pavement project, and scenario 2 compressing the schedule.

The third step in the method is the determination and region-
alization of critical variables using the modi�ied Monte Carlo 
�iltering. Eighteen in�luential variables are considered in this 
study, which have the strongest effect on whether the project 
duration exceeds 99.41 days (third quartile) for scenario 1, 
or remains under 84 days for scenario 2. The sets R and R ̅  
are thus de�ined as follows:

R={x / 89.94≤ project duration(x)  <99.41, x ∈E}

R ̅={x / 99.41≤ project duration(x), x ∈E}

For scenario 1, and

R={x / project duration(x)  <84, x ∈E}

R ̅={x / 84≤ project duration(x)  <95, x ∈E}

For scenario 2.

The mMCF is applied by taking the uncertainty ranges giv-
en in Table 6 for the 18 in�luential input variables, and the 

values of the non-in�luential activities are �ixed in the nominal values. The den-
sity functions associated with each variable are compared using the Kolmogor-
ov-Smirnov test. The results are displayed in Table 8, which shows that there are 
nine critical variables for scenario 1 ( and 13 for scenario 2) that affect the desired 
behavior of the project duration, eight (four) insigni�icant variables that do not af-
fect the desired behavior of the project duration, and one (one) important variable 
that may affect the desired behavior of the project duration. Here, the important 
variable is not considered because the cumulative probability functions of the sets 
R and R ̅ are very similar (see Appendix C). Fig. 10 also highlights the critical activ-
ities for scenario 1 and 2.

The mean values of the critical variables obtained in set R can be used to obtain 
the desired behavior of the project duration. These values, in scenario 1, for ac-
tivities 5, 9, 14, 18, 20, 22, 23, 25, and 26 are 14.441, 7.256, 16.815, 7.369, 13.084, 
19.048, 7.143, 4.171 and 8.0, respectively. For scenario 2, these values for activi-
ties 5, 6, 9, 11, 12, 14, 17, 18, 20, 22, 23, 25 and 26 are 9.910, 6, 6.386, 8.855, 6.905, 
11.392, 8.682, 6.175, 9.863, 12.202, 6.544, 3.817, and 5, respectively. Additionally, 
the regionalization of the critical variables can be analyzed to obtain the desired 
behavior of the project duration. For example for scenario 1, the durations of ac-
tivities 22, 5 and 14 can explain 46.6% of the project duration variability. The re-
gion of these variables that allows for the chosen project duration to be obtained 

can therefore be studied. To this end, all variables can be 
�ixed in the mean values of set R, and only the uncertainty 
of these input variables is considered. Figs. 11a and 11b 
show the regionalization of the durations of activities 22, 5 
and 14. It is clear that several combinations of the activity 
durations can be used to obtain the desired behavior. 

The fourth stage is the evaluation of the risk of the project 
duration under the regionalized conditions. For this pur-
pose, Monte Carlo simulations were performed using the 
mean values of set R for the critical variables; full uncertain-
ties were used for the non-critical variables (insigni�icant, 
important and non-in�luential variables). Fig. 12a shows 
the cumulative probability function for the project duration 
when uncertainty is considered in all input factors. The �ig-
ure shows that the probability of the project duration not 
exceeding 99.41 and 84 days is 75% and 25% respectively. 
Fig. 12b shows the results when the critical variables are 
�ixed at the mean values of set R for scenario 1. The prob-
ability that the project duration does not exceed 99.41 is 
100%. In fact, the project duration takes the deterministic 
value of 97.3 days—an excellent result. Fig. 12c shows the 
results when the critical variables are �ixed at the mean val-
ues of set R for scenario 2. The probability that the project 
duration does not exceed 84 days is 75%—a good result.
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and the probability of a given project duration based on the potential values of activity 
durations.  
 

 

Table 6. Activity list, duration distribution functions in days, and predecessor for road pavement 
project. (U represent uniform distribution; D discrete distribution) 

ID Activity Duration Predecessor 
1 Setup batch plant U (0.5, 3.5) - 
2 Order & deliver paving mesh U(2, 8) - 
3 Deliver rebar for double barrel culvert U(2.5, 11.5) - 
4 Move in equipment U(1.5, 4.5) - 
5 Deliver rebar for small box culvert U(1, 25) - 
6 Build double barrel culvert D(4, 8, 10, 16) 3 
7 Clear & grub from Sta. 42 to Sta. 100 D(1, 2.5, 7) 4 
8 Clear & grub from Sta. 100 to Sta. 158 D(2.5, 7, 11.5) 4 
9 Build box culvert at Sta. 127 U(1, 13) 5 

10 Build box culvert at Sta. 138 U(0.5, 9.5) 5 
11 Cure double barrel culvert U(3, 15) 6 
12 Move dirt between Sta. 42 & Sta. 100 U(2.5, 11.5) 7,11 
13 Start moving dirt between Sta. 100 & Sta. 150 U(1.5, 4.5) 8 
14 Cure box culvert at Sta. 127 U(1.5, 28.5) 9 
15 Cure box culvert at Sta. 138 U(2, 14) 10 
16 Order & stockpile paving material U(0.5, 3.5) 1 
17 Place subbase from Sta. 42 to Sta.100 U(3.6, 14) 12 
18 Finish moving dirt between Sta. 100 & Sta. 150 U(1, 13) 13, 14, 15 
19 Pave from Sta. 42 to Sta. 100 U(4, 16) 2, 16, 17 
20 Place subbase from Sta. 100 to Sta. 158 U(2, 21.87) 18 
21 Cure pavement from Sta. 42 to Sta. 100 U(2.5, 11.5) 19 
22 Pave from Sta. 100 to Sta. 158 U(3, 30) 2, 16, 20 
23 Cure pavement from Sta. 100 to Sta. 158 U(2.5, 11.5) 22 
24 Place shoulders from Sta. 42 to Sta. 100 U(1,7) 21 
25 Place shoulders from Sta. 100 to Sta. 158 U(1,7) 23 
26 Place guardrail & landscape D(2.5, 4, 11) 24, 25 

 

The second step of the method is the reduction in the number of input variables using the 
SRC method for global sensitivity analysis. The results obtained by applying SRC are 
presented in Table 7. The third column shows the absolute value of SRC for each input 
variable, the fourth column shows the cumulative and normalized absolute values of SRC 
(NS), and the fifth column shows the ranking of importance: The larger the value of 
absolute SRC is, the greater the effect of uncertainty of that variable on the uncertainty of 
the project duration becomes. Only the first 18 input variables will be considered when 
applying mMCF because these 18 input variables explain over 97% of the uncertainties in 
the project duration (see NS values). Fig. 10 also highlights the influential/non-influential 
activity durations.   
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The third and fourth steps depend on the aim defined for the project duration; again, two 
scenarios are considered for illustration: scenario 1 reducing the risk of late delivery for the 
road pavement project, and scenario 2 compressing the schedule. 

The third step in the method is the determination and regionalization of critical variables 
using the modified Monte Carlo filtering. Eighteen influential variables are considered in 
this study, which have the strongest effect on whether the project duration exceeds 99.41 
days (third quartile) for scenario 1, or  remains under 84 days for scenario 2. The sets 𝑅𝑅 and 
𝑅𝑅 are thus defined as follows: 

𝑅𝑅 = 𝑥𝑥 / 89.94 ≤  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥  < 99.41, 𝑥𝑥 ∈ 𝐸𝐸  

𝑅𝑅 = 𝑥𝑥 / 99.41 ≤  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥 , 𝑥𝑥 ∈ 𝐸𝐸  

For scenario 1, and 

𝑅𝑅 = 𝑥𝑥 /  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥  < 84, 𝑥𝑥 ∈ 𝐸𝐸  

𝑅𝑅 = 𝑥𝑥 / 84 ≤  𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑥𝑥  < 95, 𝑥𝑥 ∈ 𝐸𝐸  

For scenario 2. 
 
Table 7. Standardized regression coefficients (SRCs) for the road pavement project 

Input 
Variable SRC | SRC | SN Ranking  

Input 
Variable SRC | SRC | SN Ranking 

22 0.5013 0.5013 0.1711 1 
 

11 0.0296 0.0296 0.9541 14 
5 0.4407 0.4407 0.3215 2 

 
17 0.0283 0.0283 0.9637 15 

14 0.4235 0.4235 0.4660 3 
 

24 0.0239 0.0239 0.9719 16 
20 0.3622 0.3622 0.5896 4 

 
12 0.0232 0.0232 0.9798 17 

26 0.2287 0.2287 0.6677 5 
 

3 0.0181 0.0181 0.9860 18 
18 0.2186 0.2186 0.7423 6 

 
21 0.0180 0.0180 0.9921 19 

9 0.1778 0.1778 0.8029 7 
 

16 -0.0082 0.0082 0.9949 20 
23 0.1549 0.1549 0.8558 8 

 
8 -0.0045 0.0045 0.9964 21 

25 0.1072 0.1072 0.8924 9 
 

1 -0.0044 0.0044 0.9979 22 
6 0.0496 0.0496 0.9093 10 

 
2 -0.0024 0.0024 0.9987 23 

15 0.0399 0.0399 0.9229 11 
 

4 -0.0022 0.0022 0.9995 24 
19 0.0312 0.0312 0.9335 12 

 
7 -0.0010 0.0010 0.9998 25 

10 0.0305 0.0305 0.9440 13 
 

13 0.0004 0.0004 1.0000 26 
 

The mMCF is applied by taking the uncertainty ranges given in Table 6 for the 18 
influential input variables, and the values of the non-influential activities are fixed in the 
nominal values. The density functions associated with each variable are compared using the 
Kolmogorov-Smirnov test. The results are displayed in Table 8, which shows that there are 
nine critical variables for scenario 1 ( and 13 for scenario 2) that affect the desired behavior 
of the project duration, eight (four) insignificant variables that do not affect the desired 
behavior of the project duration, and one (one) important variable that may affect the 
desired behavior of the project duration. Here, the important variable is not considered 

TABLE 06. Activity list, duration distribution functions in days, and predecessor for road pavement project. (U 
represent uniform distribution; D discrete distribution)

TABLE 07. Standardized regression coeffi  cients (SRCs) for the road pavement project

R={xR={xR={  / 89.94≤ project durationx / 89.94≤ project durationx (x)  <99.41(x)  <99.41(x , x ∈E}, x ∈E}, x

R ̅={xR ̅={xR ̅={  / 99.41≤ project durationx / 99.41≤ project durationx (x)(x)(x , x ∈E}, x ∈E}, x

R={xR={xR={  / project duration(x / project duration(x x / project duration(x / project duration( )  <84x)  <84x , x)  <84, x)  <84  ∈E}, x ∈E}, x

R ̅={xR ̅={xR ̅={  / 84≤ project duration(x / 84≤ project duration(x x / 84≤ project duration(x / 84≤ project duration( )  <95, x)  <95, x x ∈E}x ∈E}x
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a) Regionalization of duration of activities 22, 5 
and 14 for set 𝑅𝑅. 

b) Regionalization duration of activities 22, 5 
and 14 for set 𝑅𝑅. 

Fig. 11. Regionalization of activities 22, 5 and 14 for scenario 1 in road pavement project. 

 

The fourth stage is the evaluation of the risk of the project duration under the regionalized 
conditions. For this purpose, Monte Carlo simulations were performed using the mean 
values of set 𝑅𝑅 for the critical variables; full uncertainties were used for the non-critical 
variables (insignificant, important and non-influential variables). Fig. 12a shows the 
cumulative probability function for the project duration when uncertainty is considered in 
all input factors. The figure shows that the probability of the project duration not exceeding 
99.41 and 84 days is 75% and 25% respectively. Fig. 12b shows the results when the 
critical variables are fixed at the mean values of set 𝑅𝑅 for scenario 1. The probability that 
the project duration does not exceed 99.41 is 100%. In fact, the project duration takes the 
deterministic value of 97.3 days—an excellent result. Fig. 12c shows the results when the 
critical variables are fixed at the mean values of set 𝑅𝑅 for scenario 2. The probability that 
the project duration does not exceed 84 days is 75%—a good result. 
 

4 Discussion 
The methodology developed can be used to answer related questions: Which variables are 
responsible for lateness? What activities should be accelerated to compress a schedule? 
What activities should be overlapped to compress a schedule? If the project has hundreds or 
thousands of activities, the mMCF (stage 3) may not be applied unless in stage 2 the 
number of input variables is reduced to around twenty. If there are many input variables, 
then it is necessary to identify milestones and divide the project into smaller projects or 
sub-projects. If there are interdependencies between these sub-projects, the method can be 
applied to the project as represented by sub-projects and to each sub-project separately. 
However, the effect of the number of input variables in mMCF should be studied; indeed, 
this will be the aim for future studies on this topic.  
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a) Regionalization of duration of activities 22, 5 
and 14 for set 𝑅𝑅. 

b) Regionalization duration of activities 22, 5 
and 14 for set 𝑅𝑅. 

Fig. 11. Regionalization of activities 22, 5 and 14 for scenario 1 in road pavement project. 

 

The fourth stage is the evaluation of the risk of the project duration under the regionalized 
conditions. For this purpose, Monte Carlo simulations were performed using the mean 
values of set 𝑅𝑅 for the critical variables; full uncertainties were used for the non-critical 
variables (insignificant, important and non-influential variables). Fig. 12a shows the 
cumulative probability function for the project duration when uncertainty is considered in 
all input factors. The figure shows that the probability of the project duration not exceeding 
99.41 and 84 days is 75% and 25% respectively. Fig. 12b shows the results when the 
critical variables are fixed at the mean values of set 𝑅𝑅 for scenario 1. The probability that 
the project duration does not exceed 99.41 is 100%. In fact, the project duration takes the 
deterministic value of 97.3 days—an excellent result. Fig. 12c shows the results when the 
critical variables are fixed at the mean values of set 𝑅𝑅 for scenario 2. The probability that 
the project duration does not exceed 84 days is 75%—a good result. 
 

4 Discussion 
The methodology developed can be used to answer related questions: Which variables are 
responsible for lateness? What activities should be accelerated to compress a schedule? 
What activities should be overlapped to compress a schedule? If the project has hundreds or 
thousands of activities, the mMCF (stage 3) may not be applied unless in stage 2 the 
number of input variables is reduced to around twenty. If there are many input variables, 
then it is necessary to identify milestones and divide the project into smaller projects or 
sub-projects. If there are interdependencies between these sub-projects, the method can be 
applied to the project as represented by sub-projects and to each sub-project separately. 
However, the effect of the number of input variables in mMCF should be studied; indeed, 
this will be the aim for future studies on this topic.  
 

FIGURE 11. Regionalization of activities 22, 5 and 14 for scenario 1 in road 
pavement project.

TABLE 08. Modifi ed Monte Carlo fi ltering results for road pavement project.
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because the cumulative probability functions of the sets 𝑅𝑅 and 𝑅𝑅 are very similar (see 
Appendix C). Fig. 10 also highlights the critical activities for scenario 1 and 2. 

The mean values of the critical variables obtained in set 𝑅𝑅 can be used to obtain the desired 
behavior of the project duration. These values, in scenario 1, for activities 5, 9, 14, 18, 20, 
22, 23, 25, and 26 are 14.441, 7.256, 16.815, 7.369, 13.084, 19.048, 7.143, 4.171 and 8.0, 
respectively. For scenario 2, these values for activities 5, 6, 9, 11, 12, 14, 17, 18, 20, 22, 23, 
25 and 26 are 9.910, 6, 6.386, 8.855, 6.905, 11.392, 8.682, 6.175, 9.863, 12.202, 6.544, 
3.817, and 5, respectively. Additionally, the regionalization of the critical variables can be 
analyzed to obtain the desired behavior of the project duration. For example for scenario 1, 
the durations of activities 22, 5 and 14 can explain 46.6% of the project duration variability. 
The region of these variables that allows for the chosen project duration to be obtained can 
therefore be studied. To this end, all variables can be fixed in the mean values of set 𝑅𝑅, and 
only the uncertainty of these input variables is considered. Figs. 11a and 11b show the 
regionalization of the durations of activities 22, 5 and 14. It is clear that several 
combinations of the activity durations can be used to obtain the desired behavior.  
 

Table 8. Modified Monte Carlo filtering results for road pavement project. 

Scenario 1  Scenario 2 
Input 

Variable D p-values Input variable 
is  

Input 
Variable D p-values Input variable 

is 
3 0.0318 0.1144 insignificant  3 0.0252 0.1710 insignificant 
5 0.1820 0.0000 critical  5 0.2254 0.0000 critical 
6 0.0080 1.0000 insignificant  6 0.0433 0.0014 critical 
9 0.1021 0.0000 critical  9 0.0645 0.0000 critical 

10 0.0214 0.5352 insignificant  10 0.0170 0.6291 insignificant 
11 0.0151 0.9016 insignificant  11 0.0473 0.0003 critical 
12 0.0351 0.0617 important  12 0.0394 0.0049 critical 
14 0.2154 0.0000 critical  14 0.2052 0.0000 critical 
15 0.0172 0.7975 insignificant  15 0.0206 0.3829 insignificant 
17 0.0221 0.4915 insignificant  17 0.0426 0.0017 critical 
18 0.1182 0.0000 critical  18 0.1110 0.0000 critical 
19 0.0238 0.3969 insignificant  19 0.0350 0.0172 important 
20 0.1706 0.0000 critical  20 0.1521 0.0000 critical 
22 0.2209 0.0000 critical  22 0.2542 0.0000 critical 
23 0.0711 0.0000 critical  23 0.0818 0.0000 critical 
24 0.0128 0.9745 insignificant  24 0.0160 0.7036 insignificant 
25 0.0508 0.0013 critical  25 0.0652 0.0000 critical 
26	 0.0751	 0.0000	 critical	 	 26	 0.1165	 0.0000	 critical	
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the position of the balance points for cut and fill (earthmoving). In each section, the 
quantity of cut matches the quantity of fill. Table 6 shows the names of the activities, the 
distribution functions of activity durations, and direct predecessors. Fig. 10 shows the 
precedence network for the road pavement. Ioannou and Martinez (1998) used traditional 
three-point estimates (optimistic, most-likely, pessimistic) for activity durations; they 
assumed that the necessary resources are available and, therefore, that there is no 
correlation between activities. Yang (2007) used triangular (minimum, most likely, 
maximum), uniform and discrete distribution functions for the duration of activities and 
assumed that there are correlations between activities because some activities are 
performed by the same crew. However, these studies were related to uncertainty analysis. 
The objective here is different: Given a desired project duration behavior, the critical 
variables and their values or regions must be identified. Therefore, the distribution 
functions for activity duration (Table 6) represent the potential duration of these activities 
when different resources (crew, equipment and technologies) are used. Uniform distribution 
function indicates that the activity duration can take any value between the minimum and 
maximum values. Discrete distribution function indicates that only some values are 
possible. Here, all discrete values have the same probability; therefore, the duration of 
activity 6 can take 4, 8, 10, or 16 days, each with a probability of 25%. Additionally, it is 
assumed that the necessary resources are available, i.e., that there is no correlation between 
activities. For all the Monte Carlo simulations, all the SRCs, and all the mMCFs a sample 
of 10,000, 2,500 and 12,500 points were used respectively. 

 

 

Fig. 10. Activity precedence network in the highway construction project. 

First, project scheduling is simulated using the DSM using equations 1 to 3 because in this 
case there is not overlap between activities. Monte Carlo simulation gives a minimum value 
of 44.30, a first quartile of 79.77, a mean of 89.94, a third quartile of 99.41, and a 
maximum of 143.75 days for project duration. This information yields the number of days 

FIGURE 10. Activity precedence network in the highway construction project.
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APPENDIX A
---------------------
--- Examples of project programming using the DSM --- 

This appendix presents two examples of activity programming using the DSM. Both exam-
ples consider a project with six activities (A,B,C,D and F): The �irst involves a programming 
problem without overlap, and the second involves a programming problem with overlap.

Example without overlap. The DSM for this example is shown in Fig. A1. Values in the diagonal 
are the activity duration, and “x” represents the dependence between activities. Fig. A1 also 
includes three additional columns representing the early start (ES), late start (LS) and total 
slack time or total �loat time (S) for each activity. Moreover, two rows showing the early 
�inish (EF) and late �inish (LF) for each activity are included. The required equations are

(EF)i=(ES)i+Aii  0< i ≤ n   (A1)

(ES)j= Max [(EF)i ]  0< i ≤ n, 0< j ≤ n  (A2)

P = Max [(EF)j]  0< i ≤ n   (A3)

(LS)i = (LF)i - Aii  0< i ≤ n   (A4)

(LF)i = Min [(LS)j ]  0< i ≤ n, 0< j ≤ n  (A5)

Si = (LS)i - (ES)i  0< i ≤ n   (A6)

We start with the activities that do not have predecessors, (ES)A = 0, and using equation 
A1 (EF)A is calculated by adding the activity duration (AAA = 2) to the (ES)A. Therefore, 
(EF)A is equal to 2, and (ES)B is equal to (EF)A because the activity A is predecessor of 
activity B. Fig. A1 shows the calculation of (EF)B and (ES)D, which can be easily done by 
hand or using a spreadsheet.

After the early start and early �inish have been calculated for all activities, the calculation of 
late start and late �inish can be considered using equations A4 and A5. The calculation begins 
with the activities without successor activities, in this case activity F. Therefore, (LF)F=14, 
and the late start of activity F is equal to the late �inish minus the F activity duration. Fig. A2 
illustrates the calculation of (LF)B and (LF)F. It can be observed that the calculation of early/
late �inish/start can be easily done in the DSM by hand or using a spreadsheet. Finally, the 
total slack time can be calculated using equation A6, as shown in Fig. A2.

Fig. A2 is adequate for observing all the information in a matrix: activity duration, de-
pendency, ES, LS, EF, LF and S. 

Example with overlap. This example considers overlap between activities. Fig. A3 shows 
a DSM that includes Bji, Cji overlap factor times and the activities durations (Bii or Cii). The 
equations required for the calculation of early/late start/�inish are as follows:

(ES)j= Max [(ES)i+Bji Bii- Cji Cjj]   0< i ≤ n, 0< j ≤ n (A7)

(EF)i=(ES)i+Bii    0< i ≤ n  (A8)

natural overlap project duration = Max[(EF)j ] 0< i ≤ n  (A9)

(LS)i = Min[(LS)j-Bji Bii+Cji Cjj]   0< i ≤ n, 0< j ≤ n (A10)

(LF)j=(LS)j+Bjj      0< i ≤ n  (A11)

 Sj=(LF)j+(LS)j     0< i ≤ n  (A12)

Again, the calculation begins by the early start of activities without a predecessor, (ES)A=0, 
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Appendix A. Examples of project programming using the DSM 

This appendix presents two examples of activity programming using the DSM. Both 
examples consider a project with six activities (A,B,C,D and F): The first involves a 
programming problem without overlap, and the second involves a programming problem 
with overlap. 

Example without overlap. The DSM for this example is shown in Fig. A1. Values in the 
diagonal are the activity duration, and “x” represents the dependence between activities. 
Fig. A1 also includes three additional columns representing the early start (ES), late start 
(LS) and total slack time or total float time (S) for each activity. Moreover, two rows 
showing the early finish (EF) and late finish (LF) for each activity are included. The 
required equations are 

(𝐸𝐸𝐸𝐸)! = (𝐸𝐸𝐸𝐸)! + 𝐴𝐴!!                      0 < 𝑖𝑖 ≤ 𝑛𝑛      (A1) 

(𝐸𝐸𝐸𝐸)! = 𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸 !                      0 < 𝑖𝑖 ≤ 𝑛𝑛, 0 < 𝑗𝑗 ≤ 𝑛𝑛    
 (A2) 

𝑃𝑃 = 𝑀𝑀𝑀𝑀𝑀𝑀[(𝐸𝐸𝐸𝐸)!]                            0 < 𝑗𝑗 ≤ 𝑛𝑛      (A3) 

(𝐿𝐿𝐿𝐿)! = (𝐿𝐿𝐿𝐿)! − 𝐴𝐴!!                      0 < 𝑖𝑖 ≤ 𝑛𝑛      (A4) 

(𝐿𝐿𝐿𝐿)! = 𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝐿𝐿 !                      0 < 𝑖𝑖 ≤ 𝑛𝑛, 0 < 𝑗𝑗 ≤ 𝑛𝑛    (A5) 

𝑆𝑆! = (𝐿𝐿𝐿𝐿)! − (𝐸𝐸𝐸𝐸)!                           0 < 𝑗𝑗 ≤ 𝑛𝑛      (A6) 

We start with the activities that do not have predecessors, (𝐸𝐸𝐸𝐸)! = 0, and using equation 
A1 (𝐸𝐸𝐸𝐸)! is calculated by adding the activity duration (𝐴𝐴!! = 2) to the (𝐸𝐸𝐸𝐸)!. Therefore, 
(𝐸𝐸𝐸𝐸)! is equal to 2, and (𝐸𝐸𝐸𝐸)! is equal to (𝐸𝐸𝐸𝐸)! because the activity A is predecessor of 
activity B. Fig. A1 shows the calculation of (𝐸𝐸𝐸𝐸)! and (𝐸𝐸𝐸𝐸)!, which can be easily done by 
hand or using a spreadsheet. 
                 (𝐸𝐸𝐸𝐸)! = (𝐸𝐸𝐸𝐸)! + 𝐴𝐴!! = 2 + 4 = 6 

 A B C D E F ES LS S 
A 2      0   
B x 4     2   
C x  3.5    2   
D  

x X 5   6   
E  x   4  6   
F    x x 3 11   

EF 2 6 5.5 11 10 14    
LF          

 

                             (𝐸𝐸𝐸𝐸)! = 𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸 !, 𝐸𝐸𝐸𝐸 !   = 𝑀𝑀𝑀𝑀𝑀𝑀 6, 5.5 = 6                   

Fig. A1. Early start and early finish calculation for the example without overlap 

34	
	

After the early start and early finish have been calculated for all activities, the calculation of 
late start and late finish can be considered using equations A4 and A5. The calculation 
begins with the activities without successor activities, in this case activity F. Therefore, 
(𝐿𝐿𝐿𝐿)! = 14, and the late start of activity F is equal to the late finish minus the F activity 
duration. Fig. A2 illustrates the calculation of (𝐿𝐿𝐿𝐿)! and (𝐿𝐿𝐿𝐿)!. It can be observed that the 
calculation of early/late finish/start can be easily done in the DSM by hand or using a 
spreadsheet. Finally, the total slack time can be calculated using equation A6, as shown in 
Fig. A2. 
Fig. A2 is adequate for observing all the information in a matrix: activity duration, 
dependency, ES, LS, EF, LF and S.  
Example with overlap. This example considers overlap between activities. Fig. A3 shows a 
DSM that includes 𝐵𝐵!", 𝐶𝐶!"overlap factor times and the activities durations (𝐵𝐵!! or 𝐶𝐶!!). The 
equations required for the calculation of early/late start/finish are as follows: 

(𝐸𝐸𝐸𝐸)! = 𝑀𝑀𝑀𝑀𝑀𝑀[(𝐸𝐸𝐸𝐸)! + 𝐵𝐵!" 𝐵𝐵!! − 𝐶𝐶!" 𝐶𝐶!!]                0 < 𝑖𝑖 ≤ 𝑛𝑛, 0 < 𝑗𝑗 ≤ 𝑛𝑛  (A7) 

𝐸𝐸𝐸𝐸 ! = 𝐸𝐸𝐸𝐸 ! + 𝐵𝐵!!                                                     0 < 𝑖𝑖 ≤ 𝑛𝑛  (A8) 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝑀𝑀𝑀𝑀𝑀𝑀[(𝐸𝐸𝐸𝐸)!]                 0 < 𝑗𝑗 ≤ 𝑛𝑛  (A9) 

(𝐿𝐿𝐿𝐿)! = 𝑀𝑀𝑀𝑀𝑀𝑀[(𝐿𝐿𝐿𝐿)! − 𝐵𝐵!" 𝐵𝐵!! + 𝐶𝐶!" 𝐶𝐶!!]                0 < 𝑖𝑖 ≤ 𝑛𝑛, 0 < 𝑗𝑗 ≤ 𝑛𝑛  (A10) 

(𝐿𝐿𝐿𝐿)! = (𝐿𝐿𝐿𝐿)! + 𝐵𝐵!!                                                  0 < 𝑗𝑗 ≤ 𝑛𝑛  (A11) 

 𝑆𝑆! = (𝐿𝐿𝐿𝐿)! + (𝐿𝐿𝐿𝐿)!                                                   0 < 𝑗𝑗 ≤ 𝑛𝑛  (A12) 

Again, the calculation begins by the early start of activities without a predecessor, 
𝐸𝐸𝐸𝐸 ! = 0, and the early finish is easily calculated as follows: 𝐸𝐸𝐸𝐸 ! = 𝐸𝐸𝐸𝐸 ! + 𝐵𝐵!! = 2. 

These values are thus included in the corresponding column and row. This is done for all 
activities. Fig. A3 explains how to make these calculations by hand or using a spreadsheet. 
The project duration is therefore the maximum value of early finish, in this case 12.4. The 
late start and late finish can be calculated by starting with the activities without a successor, 
in this case activity F. The calculations of late start and late finish are not show, but the 
readers can refer to equations A10 and A11. 
                 (𝐿𝐿𝐿𝐿)! = 𝑀𝑀𝑀𝑀𝑀𝑀 𝐿𝐿𝐿𝐿 !, 𝐿𝐿𝐿𝐿 ! = 𝑀𝑀𝑀𝑀𝑀𝑀 7,6 = 6 

 A B C D E F ES LS S 
A 2      0 0 0 
B x 4     2 2 0 
C x  3.5    2 2.5 0.5 
D  x x 5   6 6 0 
E  x  

 

4 
 6 7 1 

F    x x 3 11 11 0 
EF 2 6 5.5 11 10 14    
LF 2 6 6 11 11 14    

 

                                           (𝐿𝐿𝐿𝐿)! =  (𝐿𝐿𝐿𝐿)! − 𝐴𝐴!!  = 11 − 4 = 7                   

FIGURE A1. Early start and early fi nish calculation for the example without overlap

FIGURE A2. Late start and late fi nish calculation for example without overlap.

FIGURE A3. ES, LS, EF, LF and S for example with overlap

and the early �inish is easily calculated as follows: (EF)A=(ES A+BAA=2. 
These values are thus included in the corresponding column and 
row. This is done for all activities. Fig. A3 explains how to make 
these calculations by hand or using a spreadsheet. The project 
duration is therefore the maximum value of early �inish, in this 
case 12.4. The late start and late �inish can be calculated by starting 
with the activities without a successor, in this case activity F. The 
calculations of late start and late �inish are not show, but the readers 
can refer to equations A10 and A11. Note that Fig. A3 is a matrix 
representation including both overlap factors that allows for the 
calculation of ES, LS, EF, LF and S. Additionally, this matrix allows 
for all the information to be viewed simultaneously.

A METHOD FOR IDENTIFICATION OF CRITICAL SCHEDULING DECISIONS

4. DISCUSSION
---------------------
The methodology developed can be used to answer 
related questions: Which variables are responsible 
for lateness? What activities should be accelerated 
to compress a schedule? What activities should be 
overlapped to compress a schedule? If the project 
has hundreds or thousands of activities, the mMCF 
(stage 3) may not be applied unless in stage 2 the 
number of input variables is reduced to around 
twenty. If there are many input variables, then it 
is necessary to identify milestones and divide the 
project into smaller projects or sub-projects. If there 
are interdependencies between these sub-projects, 
the method can be applied to the project as rep-
resented by sub-projects and to each sub-project 
separately. However, the effect of the number of 
input variables in mMCF should be studied; indeed, 
this will be the aim for future studies on this topic. 

The results of applying mMCF depend on the 
sample size. In the examples discussed, sever-
al sample sizes were considered, and for each 
sample size, several samples were used. This 
program was executed several times. The sam-
ple size that provided the best reproducibility 
was selected. In general, the critical and insig-
ni�icant variables tend to be the same between 
different samples, but the important varia-
bles often change to critical or insigni�icant 
types in each sample, based on the Kolmogor-
ov-Smirnov test. Thus, it is advisable to observe 
the cumulative probability functions, which 
provide more reproducible results. In other 
words, the results obtained with the Kolmogo-
rov-Smirnov test must be con�irmed by a visual 
review of the cumulative probability functions.

Based on the case studies, it can be stated that 
controlling critical variables tends to yield the 
desired results with a high level of probability, 
but it is necessary to verify the results by using 
the Monte Carlo simulation to determine the 
probability of obtaining the desired behavior. 
Furthermore, it is clear that in practice, not all 
input variables may be controlled, or the con-
trols can have high costs and may therefore be 
infeasible in practice. In this case, regionaliza-
tion between the variable in question and the 
variables that most strongly affect the project 
duration can be achieved; two or three varia-
bles typically represent a good size for visual 
study. This regionalization can be achieved 
with several pairs and/or trios of variables. 

The method can be extended to more than one 
output variable, e.g., project duration and pro-
ject cost. In such cases, a model that includes all 
output variables is required. Global sensitivity 
methods are readily applicable to more than 
one output variable and can therefore be ap-
plied to reduce the number of input variables. 
However, the application of mMCF to more than 
one output variable is not straightforward, and 
further study in this respect is required.

5. CONCLUSIONS
---------------------
A method was presented to identify and localize 

FIGURE 12. Cumulative distribution functions for project 
duration (x) for road pavement project: a) all input variables 
with uncertainty; b) critical variables for scenario 1 fi xed at 

their mean values; b) critical variables for scenario 2 fi xed at 
their mean values;
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Fig. 12. Cumulative distribution functions for project duration (x) for road pavement project: a) all 
input variables with uncertainty; b) critical variables for scenario 1 fixed at their mean values; b) 
critical variables for scenario 2 fixed at their mean values; 
 

 

critical variables for project scheduling under 
uncertainty. The proposed method consists of 
four stages: 1) a Monte Carlo simulation of project 
scheduling using a DSM, 2) the reduction in the 
number of input variables using an index based 
on the standardized regression coef�icient, 3) 
the determination and regionalization of critical 
variables with a modi�ied MCF method, and 4) an 
evaluation of risk of the project duration under 
the regionalized conditions. In addition, several 
contributions were included: 1) the method of 
Maheswari and Varghese was extended to include 
the calculation of late start, late �inish, and slack 
time and examples of calculation were included; 
2) the cumulative standardized regression coef-
�icient was introduced as an index to reduce the 
number of input variables; 3) the MCF method 
was modi�ied so that the size of the sets of desired 
behavior and unwanted behavior have similar 
sizes, which improves the statistical behavior of 
the method; and 4) criteria was developed for the 
regionalization of the input variables. 

The method was implemented in three case 
studies including projects with and without 
overlapping, uniform and discrete distribu-
tion functions to represent uncertainties in 
input variables, activity acceleration and/or 
overlapping as strategies for compressing the 
schedule. Based on these case studies, it was 
demonstrated that the methodology proposed 
allows for the identi�ication of the input vari-
ables responsible for a certain behavior of the 
project duration. In addition it was demon-
strated that: 1) the Monte Carlo simulation of 
project duration using DSM allows for the iden-
ti�ication of the feasible behavior of the project 
duration and the identi�ication of the adequate 
de�inition of desired behavior and unwanted 
behavior for the MCF method; 2) the cumula-
tive SRC can be used to identify the non-in�lu-
ential input variables for the uncertainty of the 
project duration. Then, these input variables 
can be �ixed in the nominal values. This means 
that the model to estimate the project duration 
will have less input variables, which improves 
the result given by the mMCF; 3) the modi�ied 
MCF method has proven to be a good method 
for the identi�ication of critical variables to ob-
tain the desired duration of a project; 4) by us-
ing the mean values of the critical variables in 
the desired behavior set, the desired behavior 
is obtained with a high probability.
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 (𝐸𝐸𝐸𝐸)𝐵𝐵 = 𝑀𝑀𝑀𝑀𝑀𝑀[(𝐸𝐸𝐸𝐸)𝐴𝐴 + 𝐵𝐵𝐵𝐵𝐵𝐵 𝐵𝐵𝐴𝐴𝐴𝐴 − 𝐶𝐶𝐵𝐵𝐵𝐵 𝐶𝐶𝐵𝐵𝐵𝐵] = 𝑀𝑀𝑀𝑀𝑀𝑀[0 + 0.87×2 − 0.13×4] = 1.22    

 

  A B C D E F ES LS S 

A 2 
          

0 0 0           

B 
0.87  

4 
        

1.22 1.25 0.03  0.13         

C 
0.95    

3.5 
      

1.73 1.73 0  0.05         

D 
  0.95  0.95  

5 
    

4.8 4.8 0    0.05 
 

0.05     

E 
  0.95      

4 
  

4.82 5.75 0.93    0.05       

F 
      0.95  0.95  

3 9.4 9.4 0        0.05  0.05 
EF 2 5.22 5.23 9.8 8.82 12.4  
LF 2 5.25 5.23 9.8 9.75 12.4 

                                                      

  (𝐸𝐸𝐸𝐸)𝐷𝐷 = (𝐸𝐸𝐸𝐸)𝐷𝐷 + 𝐵𝐵𝐷𝐷𝐷𝐷 = 4.8 + 5 = 9.8                                                      
 

Fig. A3. ES, LS, EF, LF and S for example with overlap 
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