
96   JOURNAL OF MODERN PROJECT MANAGEMENT  •  MAY/AUGUST  •  2017 2017  •  JOURNALMODERNPM.COM   97

DOI NUMBER: 10.19255/JMPM01309

PROJECT APPROACH

PROACTIVE 
TACTICAL PLANNING 

APPROACH
for large scale engineering and 

construction projects

KEYWORDS
Rough-cut capacity planning • Capacity buff ering • Proactive tactical planning • Simulation-based experiment 
• Large-scale engineering • Construction projects.

1. INTRODUCTION
---------------------
Large-scale engineering and construction (LSEC) projects are highly complex 
(An & Shuai, 2011; Russell, 2013) and are subject to a great level of uncertainty 
especially during the early phases as detailed engineering is not completed yet. 
LSEC projects also last for a long duration. For instance, Miller and Lessard (2000) 
have studied 60 large-scale engineering projects and the average duration was six 
and a half years, with a construction period of four years. 

Planning is thus a key factor to the success or failure of large projects (Gibson Jr 
et al., 2006; Serrador, 2013). In practice, most LSEC projects are planned hier-
archically in order to deal with their planning complexity. Unlike the monolithic 
planning approach that consists in scheduling the project at a unique detailed 
level, hierarchical planning consists of breaking down planning into more man-
ageable parts by subdividing it to sub-problems at different aggregation lev-
els consistent with the degree of project definition and the intended schedule 
usage (AACE International, 2010a, 2010b; De Boer, 1998). High-level decision 
schedules, based on limited information, are developed during the first phases 
of the project where only preliminary and basic engineering have been per-
formed, while more detailed schedules are developed as engineering progress-
es and more specific information and accurate estimates become available. As 
the level of detail increases, the planning horizon decreases and the use of the 
schedule migrates from management planning to performance-level and con-
trol (de Leon, 2011). 

In the literature, the tactical planning level refers to project planning during the 
bidding and order acceptance phase of a project (De Boer, 1998). In the context 

of engineering and construction projects, this phase corresponds to the final stage 
of the pre-execution where the final investment decision is taken (Cherkaoui et 
al., 2013). The main objective of tactical planning is thus to make budgetary and 
due date commitments. In this paper, the tactical planning level is extended to the 
execution main phase while the detailed engineering is still in progress. Indeed, 
the tactical plan developed at the end of the pre-execution phase needs to be up-
dated in order to consider the new available information and make the adequate 
commitments with the corresponding stakeholders of the project. 

The tactical planning level includes rough-cut capacity planning (RCCP) deci-
sions about due dates and milestones of projects, overtime work levels, sub-
contracting, etc., that are usually updated every six months or so, depending on 
expected project durations (De Boer, 1998). Based on customer specifications, 
the RCCP problem consists in generating a network of work packages (WPs) 
with rough estimates of resource requirements and minimum durations under 
global resource availability constraints over aggregate periods. Work packages 
are clusters of yet undefined related activities that extend over a long duration, 
i.e. several weeks or months. Resource allocation to WPs are considered flexible 
over periods, which allows the durations of the WPs to be adapted according to 
time and cost-related considerations (Baydoun et al., 2016). 

Over the years, several exact and heuristic methods, based on RCCP, have been 
proposed for the tactical planning of LSEC projects (Leachman and Boysen 
(1985); Speranza and Vercellis, 1993; De Boer (1998); Hans (2001); Neumann 
et al. (2003); Wullink et al. (2004); Gademann and Schutten (2005); Masmou-
di (2011); Alfieri et al. (2011), Alfieri et al. (2012); Haït and Baydoun (2012); 
Cherkaoui et al. (2015); Baydoun et al. (2016); Carvalho et al. (2016)). In gen-
eral, these methods do not take into account uncertainty which however arises 
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very frequently in practice at the tactical level. In fact, most of these methods 
are deterministic, since the input data is assumed to be precisely known and 
set to some nominal value (Carvalho et al., 2016). Furthermore, the determin-
istic models for the tactical capacity planning have been developed under the 
assumption that uncertainties are implicitly dealt with by choosing a proper 
level of aggregation (Wullink, 2005). However, explicitly incorporating uncer-
tainty in tactical capacity planning models can lead to a significant advantage in 
terms of plan effectiveness when compared to a deterministic approach (Alfieri 
et al., 2012; Carvalho et al., 2016; Wullink, 2005). To the best of our knowledge, 
none of the RCCP-based methods proposed to date explicitly incorporate the 
disaggregation uncertainty. In project planning, disaggregation uncertainty is 
related to all forms of disaggregation, including the disaggregation of aggregate 
resource capacities into precise capacity estimates on short periods and the dis-
aggregation of WPs into detailed activities. 

In this paper, the impact of the disaggregation uncertainty on the robustness of 
the baseline schedule produced at the tactical level is studied and a buffering 
strategy is proposed to improve the robustness. More precisely, we are interest-
ed in maximizing the quality robustness of the tactical baseline schedule, not its 
solution robustness. Quality robustness refers to the insensitivity of the plan in 
terms of target performance, i.e., the objective function value, to the occurrence 
of uncertain events. Solution robustness or stability addresses insensitivity of 
the schedule in terms of activity start times (Alfieri et al., 2012). Since the aim 
of scheduling at the tactical planning level is to quote a tight and reliable cost 
and duration of the project, the exactitude of the start times of the WPs is not 
our priority at this level. 

In practice, common scheduling methods used for tactical planning ignore 

uncertainty when building the schedule. In order to overcome this problem, 
practitioners incorporate some slack in the schedule to protect the important 
project milestones (Russell, 2013; Yeo & Ning, 2006) and add contingencies to 
the estimated budget (Touran, 2003) to cover uncertainties. However, the size 
of the slacks and the contingency amounts are usually arbitrarily established. 
This is problematic as it does not guarantee objective and rigorous estimations 
which can impact the quality of the plans. These limitations in considering un-
certainty in tactical planning together with the importance of having a tight and 
reliable schedule at the tactical level as a base for the long term budget and due 
date commitments led us to propose, in this paper, a proactive planning ap-
proach based on a simple and efficient capacity buffering strategy to be applied 
to a RCCP model. As highlighted by Van de Vonder (2006), a proactive approach 
focuses at incorporating safety in the baseline schedule to absorb future disrup-
tions, i.e., aiming at robustness. At the opposite, reactive approaches provide a 
proper strategy to revise or re-optimize a schedule when an unexpected event 
occurs (Van de Vonder et al., 2007). Two sources of uncertainties are consid-
ered in this paper: the disaggregation uncertainty of rough resource capacity 
estimates into more detailed ones and the uncertainty in the estimation of the 
work contents of WPs. The robustness and performance of the proposed pro-
active approach is evaluated through an extensive simulation-based analysis. 

The remainder of the paper is organized as follows. Section 2 describes the prob-
lem under study: the RCCP problem under uncertainty intended for the tactical 
planning level of LSEC projects. Section 3 presents the methodological approach 
including the description of the proactive planning approach proposed to resolve 
the RCCP problem under uncertainty and the experimental set-up. Computation-
al results are presented in Section 4 and concluding remarks in Section 5. 
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2. PROBLEM DESCRIPTION
---------------------
The problem under study is a RCCP problem under uncertainty intended for the tactical 
planning level of LSEC projects. The uncertainties considered are the uncertainty in work 
package work contents and the uncertainty in the capacities of resources over periods. The 
uncertainty in the forecasted resource capacities can result from two possible sources: the 
uncertainty in the magnitude (i.e., amount) and the uncertainty in the temporal distribution 
over the forecast period. In this paper, only the second source of uncertainty is considered: 
the temporal distribution, i.e., the disaggregation uncertainty. 

In the literature, the majority of the tactical capacity planning models consider the resource 
capacities flexible by allowing the use of non-regular capacity (e.g., hiring additional person-
al, overtime, subcontracting, or outsourcing). These models are generally time-driven with 
an imposed project deadline. This capacity flexibility is often present in the tactical level 
unlike the operational level where critical resources (e.g., requiring long-lead times or a cer-
tain level of expertise) are difficult or even impossible to expand in the short term. Another 
relevant attribute for the context of LSEC projects is the variability of the period lengths. 
Considering varying period durations through the horizon allows to consider different ag-
gregation levels. However, all tactical capacity planning models proposed in the literature 
consider the same aggregation level through the project horizon. 

In this paper, we propose a proactive approach based on a time-driven RCCP model with 
variable period lengths where the first periods are considered more detailed than the fur-
ther ones. The model aims at maximizing the robustness cost function under uncertain data. 

The problem can be described as follows. Consider a planning horizon H that is discretized 
into time buckets of not necessarily equal length. These buckets are referred to as periods. Let 
P be the set of periods (index p) where each period has a duration Dp. Without loss of general-
ity, the time unit is assumed to be one day and the horizon and the durations Dp are expressed 
in weeks. Let I be the set of work packages (index i) where each WP requires a subset of R inde-
pendent resource groups (index r). The work packages have generic precedence relations (i.e., 
network structures) of finish-to-start zero-lag type. The set Predi consists of all predecessors of 
WP i. Each WP has a required stochastic work content to be completed. A WP’s work content 
is defined as the sum of its required workloads Qri on each resource group r. Qri is defined as 
the total amount of resource group r required by the WP i. For instance, a required workload 
of twenty man-days could be realized in different ways. Twenty men can work during one day, 
or two men during ten days, or even a flexible profile of five men for two days, and ten men 
for one day. A WP may require several resource groups simultaneously. The parameter Qi

max is 
the maximum workload that can be assigned to i during one week due to technical or spatial 
constraints. A WP has a release date RDi before which it cannot start. These dates are usually 
specified by external factors as local permissions, certificate requirements or weather condi-
tions. Each resource group r has a regular capacity of Krp (e.g., 30 man-days) available in period 
p. The temporal disaggregation of the capacity over a period into subperiods is uncertain. The 
number of subperiods should reflect the level of detail required for the next planning level 
in the hierarchy, the operational level, where the resource capacities are considered certain. 
Without loss of generality, each subperiod is assumed to have a length of one week. The disag-
gregated capacities over the subperiods should aggregate up to the estimated cumulated sum. 
Dividing the period p into n subperiods, Krp is disaggregated as: 

Krp=∑
n

j=1 krpj     p ∈ P, r ∈ R

where krpj is the disaggregated capacity of the jth subperiod of period p (FIGURE 1). The 
subperiods are grouped from all periods in one global set of detailed periods.

L = { l=1, ..., H }

The objective is to build a robust feasible schedule in respect of all constraints (precedence 
relations, maximum allowable workloads, release dates and global resource constraints 
over periods) by minimizing the robustness cost function E(cost%), which measures the 
expected percentage deviation of costr , the project cost of the realized schedule, from the 
optimal project cost of the baseline schedule costbas *. The baseline schedule represents 

the schedule obtained by applying an exact procedure on the esti-
mated data at the tactical planning stage. The realized schedule is 
the schedule obtained after project execution. In this paper, since 
data of a real project is not available, the project execution will 
be simulated with a reactive procedure as described in Section 3. 

In this paper, the project cost refers to the cost of non-regular 
capacities used over all resource groups and periods. Therefore, 

costbas ∗ = ∑r∈R ∑p∈P yext∗rp

 where yext*rp represents the external load of resource r in period 
p in the baseline schedule and 

costr = ∑r∈R ∑l∈L yextrl

 where yextrl represents the actual external load of resource r in 
the detailed period l in the realized schedule. 

Krp=∑
n

j=1 krpj krpj k     p ∈ P, r ∈ R

costbascostbascost ∗ = ∑r∈R ∑r∈R ∑r∈R p∈P yext∗rp

costr = ∑r∈R ∑r∈R ∑r∈R l∈L yextrlyextrlyext

L = { l=1, ..., H }
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nature of the uncertain parameters 
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produce a robust schedule that minimizes the 
robustness objective function, the majority of 
the proactive scheduling methods proposed in 
literature (intended for the resource 
constrained project scheduling problem at the 

FIGURE 01. Illustration of disaggregating resource capacities 

Unfortunately, the robustness cost functions are very hard to 
evaluate and optimize, even for problems without resource con-
straints, due to the stochastic nature of the uncertain parameters 
(Hagstrom, 1988). Therefore, in order to produce a robust sched-
ule that optimizes the robustness objective function, the majority 
of the proactive scheduling methods proposed in literature (in-
tended for the resource constrained project scheduling problem 
at the operational level) are heuristics and metaheuristics that 
aim at producing a sound baseline schedule by adding some safe-
ty in it and then use simulation to evaluate the robustness objec-
tive function. 

In this sense, a proactive methodology is proposed in the next section 
to solve the RCCP problem under uncertainty based on a resource 
buffering strategy and then evaluate the robustness cost function us-
ing a multi-stage simulation-based reactive approach. 

3. METHODOLOGICAL APPROACH
---------------------
3.1 Description of the proactive approach and the experimental set-up 
FIGURE 2 presents a flowchart of the methodological approach 
adopted in this paper. The first block presents the proposed proac-
tive approach to generate a quality robust baseline RCCP schedule, 
while the second block presents the multi-stage simulation-based 

The uncertainty in the WP work contents is taken into account by considering the most 
probable values from their stochastic distributions (step 1 in FIGURE 2). The disaggregation 
uncertainty of resource capacities is taken into account by reducing the capacities on aggregate 
periods by a certain percentage α%, or in other words by introducing a capacity buffer (step 
3 in Figure 2). The strategy followed to find the value of parameter α is described in detail in 
Section 3.2. By introducing capacity buffers, the higher flexibility of resource constraints on 

aggregate periods compared to detailed periods is reduced. This 
high flexibility can yield to an underestimation of the project cost 
as illustrated in the following example. Suppose that a project is 
composed of two WPs using one resource r. The first WP requires 
14 units from this resource to complete and the second one requires 
24 units. The project is supposed to be planned at first on a unique 
aggregate period with an estimated capacity of 40 units from the 
resource r. The project was therefore planned with an optimal null 
cost as illustrated in FIGURE 3. The assumption is made that once 
more information becomes available, the real disaggregated capac-
ities on the four detailed periods composing the aggregate period 
are respectively 5, 15, 10 and 10 units. By adopting the schedule of 
FIGURE 3, the project cost increases by 6 units as shown in FIGURE 4.

 

 

 
 

Fig. 2: Flowchart of the global methodological approach 
 

The RCCP model resolved as part of the 
proposed proactive strategy (step 4 in Fig. 2) 
generalizes the MILP (Mixed Integer Linear 
Programming) RCCP model proposed by 
Haït and Baydoun (2012) by considering 
different aggregation levels of periods and 

therefore resource capacities. The RCCP 
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2) is performed using the solver CPLEX 
Optimization Studio 12.6.1.0 with the time 
limit set to 1000 seconds. The proactive 
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FIGURE 03. Project planned with a null cost at an aggregate level
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Fig. 3: Project planned with a null cost at an aggregate level 

 

FIGURE 04. Cost increase in the detailed level
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The RCCP model resolved as part of the proposed proactive strategy 
(step 4 in FIGURE 2) generalizes the MILP (Mixed Integer Linear 
Programming) RCCP model proposed by Haït and Baydoun (2012) 
by considering different aggregation levels of periods and therefore 
resource capacities. The RCCP model is presented in APPENDIX 1. 
The resolution of the RCCP model (step 4 in FIGURE 2) is performed 
using the solver CPLEX Optimization Studio 12.6.1.0 with the time 
limit set to 1000 seconds. The proactive approach is tested on 450 
test project instances based on the commonly used RCCP instances 
of De Boer (1998). The base instances of De Boer (1998) have been 
modified to adopt the variable period lengths characteristic of the 
problem studied. Therefore, the first four periods of the horizon 
were kept with a duration of one week as in the base instances, 
while the further periods were grouped by clusters of four to form 
aggregate periods with a duration of four weeks each. Capacities 
have been aggregated in consequence by summing the capacities 
on the clustered periods of the base instances. Note that since the 
project horizon is not necessarily a multiple of four, the duration of 
the fifth period in this case corresponds to the rest of the Euclidean 
division of the time horizon by four. 

The instances are characterized by two parameters, namely the 
number of WPs N and the number of resource groups K. Three 
levels are defined for the parameter N (10, 20 and 50 WPs) and the 
parameter K (3, 10 and 20 resource groups), which provides nine 
instance classes. 50 instances are generated for each of these classes. 

Once the baseline schedule is generated for all the test project 
instances, we move to the experimental analysis as shown in the 
second block of FIGURE 2. For each instance, 100 random execu-
tion scenarios are generated based on the triangular probability 
distributions of WPs. The most probable value of the triangular 
distribution corresponds to the baseline WP work content, the 
minimum and maximum values are respectively set to 0.9 and 1.1 
times the baseline value. For each generated scenario, a multi-stage 

reactive approach used for experimental analysis.
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reactive approach is applied. This approach updates 
the schedule at each new decision point (tdp ) and 
simulates the project execution between each of 
two consecutive decision points. Decision points are 
situated at the end of each detailed one-week period. 
The updated schedule at a given decision point is called 
the projected schedule. The simulation algorithm 
between two consecutive decision points (step 2’ in 
FIGURE 2) is detailed in APPENDIX 2. To describe 
it briefly, it follows the resource allocation decisions 
of the projected schedule but updates if necessary 
the durations of the WPs on the simulated period 
according to the up-to-date information about their 
work contents. At the end of the simulated period, the 
horizon is reduced by one week and the data of the 
instance is updated (step 3’ in FIGURE 2) as follows: 
WPs already completed are omitted from the network, 
WPs not yet started are kept with their estimated 
work content as in the baseline schedule and WPs 
in progress are considered with the real reminder of 
their work content as illustrated in FIGURE 5. The 
hatched (parts of) WPs are the ones omitted at the 
decision point td1. The same aggregation procedure 
used to generate the initial instances is used for the 
updated instances. This way, the four periods following 
the decision point are considered detailed and the rest 
of the periods are aggregated as shown in FIGURE 
5. Also, the same capacity buffers are applied to the 
new aggregate periods.

FIGURE 05. Updating data at the decision point td1

FIGURE 06. Flowchart of the strategy defi ning the capacity buff er
For each scenario, once all the WPs have been sched-
uled, the reactive approach ends and the realized 
schedule is generated. The project cost of the realized 
schedule costr is then compared with the optimal 
project cost of the baseline schedule costbas*. Once all 
scenarios are simulated, the robustness cost function 
of the studied project instance is evaluated as follows: 

E (cost%) = avg [(costr−cost∗
bas)/cost∗

bas]

where avg is used as an acronym for the average 
measure.

This multi-stage simulation-based reactive approach 
was implemented in Matlab R2013a interfaced with 
CPLEX Optimization Studio 12.6.1.0 by using the 
CPLEX class API in Matlab. The time limit for the 
CPLEX resolution at each decision point was set to 
1000 seconds. 

E (cost%) = avg [(costr−costcostcos ∗
bas)/cost∗cost∗cost bas]
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distributions of WPs. The most probable 
value of the triangular distribution 
corresponds to the baseline WP work content, 
the minimum and maximum values are 
respectively set to 0.9 and 1.1 times the 
baseline value. For each generated scenario, a 
multi-stage reactive approach is applied. This 
approach updates the schedule at each new 
decision point (tdp) and simulates the project 
execution between each of two consecutive 
decision points. Decision points are situated 
at the end of each detailed one-week period. 
The updated schedule at a given decision 
point is called the projected schedule. The 
simulation algorithm between two 

consecutive decision points (step 2’ in Fig. 2) 
is detailed in Appendix 2. To describe it 
briefly, it follows the resource allocation 
decisions of the projected schedule but 
updates if necessary the durations of the WPs 
on the simulated period according to the up-
to-date information about their work 
contents. At the end of the simulated period, 
the horizon is reduced by one week and the 
data of the instance is updated (step 3’ in Fig. 
2) as follows: WPs already completed are 
omitted from the network, WPs not yet 
started are kept with their estimated work 
content as in the baseline schedule and WPs 
in progress are considered with the real 
reminder of their work content as illustrated 
in Fig. 2. The hatched (parts of) WPs are the 
ones omitted at the decision point td1. The 
same aggregation procedure used to generate 
the initial instances is used for the updated 
instances. This way, the four periods 
following the decision point are considered 
detailed and the rest of the periods are 
aggregated as shown in Fig. 2. Also, the same 
capacity buffers are applied to the new 
aggregate periods. 
 

 
Fig. 2: Updating data at the decision point td1 

For each scenario, once all the WPs have 
been scheduled, the reactive approach ends 
and the realized schedule is generated. The 
project cost of the realized schedule costr is 
then compared with the optimal project cost 
of the baseline schedule costbas*. Once all 
scenarios are simulated, the robustness cost 
function of the studied project instance is 
evaluated as follows: 𝐸𝐸(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐%) =
𝑎𝑎𝑎𝑎𝑎𝑎[(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑟𝑟 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏∗ )/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑏𝑏𝑏𝑏𝑏𝑏∗ ], where avg 
is used as an acronym for the average 
measure.

 

 

 
Fig. 3: Flowchart of the strategy defining the capacity buffer size 

This multi-stage simulation-based reactive 
approach was implemented in Matlab R2013a 
interfaced with CPLEX Optimization Studio 
12.6.1.0 by using the CPLEX class API in 
Matlab. The time limit for the CPLEX 

resolution at each decision point was set to 
1000 seconds. --- 3.2 Strategy defi ning the capacity buff er size --- 

FIGURE 6 presents the strategy used to define the right capacity buffer sizes. The principle of the strategy is 
to predict the buffer size based only on relevant project parameters. To reach this objective, the sub-procedure 
Proc (see FIGURE 6) is first applied to each project instance. The aim of this sub-procedure is to find for each 
instance the optimal buffer size βins% (βins being a natural number) that once applied, allows to find the closest 
project cost to the one that would have been found if all the periods were detailed and the disaggregated 
capacities were known with certainty. The base instances of De Boer (1998) are used to represent these 
detailed disaggregated data. Once this procedure is applied to all instances, a two-way analysis of variance 
(ANOVA) is performed to analyze the impact of the parameters K and N on the buffer sizes. Then, the most 
significantly influencing parameter Par is selected and the instances are grouped according to this parameter 
value levels. For each of these groups, the average of the optimal capacity buffers found with the procedure 
Proc is computed. Then, the RCCP model (APPENDIX 1) is solved for all project instances applying these 
average capacity buffers: αpar% (see FIGURE 6). For each instance, the obtained project cost is compared to 
the cost of the corresponding disaggregated instance of De Boer (1998). If the cost gaps obtained are small 
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TABLE 01. Cost gaps between the unbuff ered aggregate schedule and the disaggregated schedule 

enough, one can conclude on the efficiency of the capacity buffer strategy based only on the 
selected project parameter Par in compensating the underestimation of cost estimations 
caused by the aggregation. 

4. COMPUTATIONAL RESULTS
---------------------
All computational results have been obtained on the computational grid consisting of 26 PCs 
with two 3.07 GHz Intel(R) Xeon(R) X5675 processors using Linux. The results of applying the 
strategy defining the capacity buffer size (FIGURE 6) are presented in the next section. This 
will be followed by the computational results of the simulation-based experimental analysis. 

--- 4.1 Capacity buff er size --- 
When applying the strategy defining the capacity buffers, each time the RCCP model (APPEN-
DIX 1) is solved, the model is run on the solver IBM ILOG CPLEX Optimization Studio 12.6.1.0 
and the search is terminated after 50000 seconds. TABLE 1 compares the project cost cost10 
of the aggregate schedule before introducing the capacity buffers with the project cost cost2 
of the disaggregated schedule:

 cost gap = (cost10−cost2)/cost2

As predicted, the costs of the unbuffered aggregate schedule are underestimated in comparison 
to those of the disaggregated schedule. Notice that the cost gaps decrease as the number of 
resource groups K increases and the number of WPs N decreases. However, the effect of N tends 
to decrease with the increase of K. A smaller dispersion of results is also noted when K increases.

TABLE 2 presents the cost gaps between the buffered aggregate schedules using the resulting 
optimal capacity buffers from the procedure Proc and the disaggregated schedules. Capacity 
buffers are expressed in percentage of the initial capacities. The table shows that parameter K 
has a clear influence on the capacity buffer sizes. In order to validate this observation, ANOVA 

cost gap = (cost10−cost2)/cost2

 

 

3.2 Strategy defining the capacity buffer size 
Fig. 3 presents the strategy used to define the 
right capacity buffer sizes. The principle of 
the strategy is to predict the buffer size based 
only on relevant project parameters. To reach 
this objective, the sub-procedure Proc (see 
Fig. 3) is first applied to each project 
instance. The aim of this sub-procedure is to 
find for each instance the optimal buffer size 
βins% (βins being a natural number) that once 
applied, allows to find the closest project cost 
to the one that would have been found if all 
the periods were detailed and the 
disaggregated capacities were known with 
certainty. The base instances of De Boer 
(1998) are used to represent these detailed 
disaggregated data. Once this procedure is 
applied to all instances, a two-way analysis of 
variance (ANOVA) is performed to analyze 
the impact of the parameters K and N on the 
buffer sizes. Then, the most significantly 
influencing parameter Par is selected and the 
instances are grouped according to this 
parameter value levels. For each of these 
groups, the average of the optimal capacity 
buffers found with the procedure Proc is 
computed. Then, the RCCP model (Appendix 
1) is solved for all project instances applying 
these average capacity buffers: αpar% (see 
Fig. 3). For each instance, the obtained 
project cost is compared to the cost of the 
corresponding disaggregated instance of De 
Boer (1998). If the cost gaps obtained are 
small enough, one can conclude on the 
efficiency of the capacity buffer strategy 
based only on the selected project parameter 

Par in compensating the underestimation of 
cost estimations caused by the aggregation. 

4 COMPUTATIONAL RESULTS 
All computational results have been obtained 
on the computational grid consisting of 26 
PCs with two 3.07 GHz Intel(R) Xeon(R) 
X5675 processors using Linux. The results of 
applying the strategy defining the capacity 
buffer size (Fig. 3) are presented in the next 
section. This will be followed by the 
computational results of the simulation-based 
experimental analysis. 

4.1 Capacity buffer size 
When applying the strategy defining the 
capacity buffers, each time the RCCP model 
(Appendix 1) is solved, the model is run on 
the solver IBM ILOG CPLEX Optimization 
Studio 12.6.1.0 and terminated the search 
after 50000 seconds. Error! Reference 
source not found. compares the project cost 
cost10 of the aggregate schedule before 
introducing the capacity buffers with the 
project cost cost2 of the disaggregated 
schedule: 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑔𝑔𝑔𝑔𝑔𝑔 = (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐10 −
𝑐𝑐𝑜𝑜𝑜𝑜𝑜𝑜2)/𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐2. As predicted, the costs of the 
unbuffered aggregate schedule are 
underestimated in comparison to those of the 
disaggregated schedule. Notice that the cost 
gaps decrease as the number of resource 
groups K increases and the number of WPs N 
decreases. However, the effect of N tends to 
decrease with the increase of K. A smaller 
dispersion of results is also noted when K 
increases. 

 

Table 1: Cost gaps between the unbuffered aggregate schedule and the disaggregated schedule 

 Average (Avg) cost gap Standard deviation (SD) of cost gap 
K = 3 -56,6% 32,6% 

N = 10 -43,7% 30,2% 
N = 20 -53,1% 32,1% 
N = 50 -73,0% 28,6% 

K = 10 -33,8% 15,2% 
N = 10 -22,5% 9,5% 
N = 20 -31,7% 9,3% 
N = 50 -47,2% 14,5% 

K = 20 -20,1% 8,7% 
N = 10 -12,1% 4,2% 
N = 20 -18,5% 3,6% 
N = 50 -29,7% 6,2% 

 

 

Table 2: Results of applying the optimal capacity buffers found with procedure Proc on the 
cost gap between the aggregate and detailed schedules 

 
 

Avg capacity 
buffers 

SD of capacity 
buffers 

Avg cost 
gap 

SD of cost 
gap 

K = 3 14,9% 7,4% -0,6% 3,7% 
N = 10 15,3% 9,0% 0,2% 1,4% 
N = 20 15,9% 8,1% -0,4% 1,6% 
N = 50 13,5% 4,4% -1,5% 6,0% 

K = 10 18,9% 4,7% 0,0% 0,7% 
N = 10 19,4% 5,2% -0,1% 0,4% 
N = 20 19,9% 4,9% -0,1% 0,5% 
N = 50 17,5% 3,6% 0,1% 1,0% 

K = 20 20,0% 4,7% 0,1% 0,4% 
N = 10 19,7% 6,5% 0,0% 0,2% 
N = 20 21,2% 4,2% 0,0% 0,3% 
N = 50 19,0% 2,4% 0,2% 0,5% 

 
Error! Reference source not found. 

presents the cost gaps between the buffered 
aggregate schedules using the resulting 
optimal capacity buffers from the procedure 
Proc and the disaggregated schedules. 
Capacity buffers are expressed in percentage 
of the initial capacities. The table shows that 
parameter K has a clear influence on the 
capacity buffer sizes. In order to validate this 
observation, ANOVA was conducted on 
Statistica Software to analyze the effects of 
both parameters N and K. The analysis shows 
that both parameters have a significant 
impact on the buffer sizes with a greater 
impact of the parameter K (p-value of 

parameter K = 3,54E-14 versus a p-value of 
1,58E-03 for parameter N). Fig. 4 and Error! 
Reference source not found. report the 
mean values and the 95% confidence interval 
of the resource buffer sizes according to the 
values of the parameters N and K. We notice 
the clear and easily interpretable effect of 
parameter K in comparison to parameter N. 
Indeed, the buffer sizes increase with the 
increase of K. K is therefore the selected 
parameter Par (see Fig. 3). We also notice a 
decrease in the slope of the curve as the 
parameter K increases, which suggests that 
the curve will tend to flatten with higher 
values of parameter K.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Mean Plot of the Capacity Buffer Size grouped by number of WPs N 
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TABLE 02. Results of applying the optimal capacity buff ers found with procedure Proc on the cost gap between 
the aggregate and detailed schedules 

was conducted on Statistica Software to analyze the effects of both 
parameters N and K. The analysis shows that both parameters have 
a significant impact on the buffer sizes with a greater impact of the 
parameter K (p-value of parameter K = 3,54E-14 versus a p-value 
of 1,58E-03 for parameter N). FIGURE 7 and FIGURE 8 report the 
mean values and the 95% confidence interval of the resource buffer 
sizes according to the values of the parameters N and K. We notice 
the clear and easily interpretable effect of parameter K in comparison 
to parameter N. Indeed, the buffer sizes increase with the increase 
of K. K is therefore the selected parameter Par (see FIGURE 6). We 
also notice a decrease in the slope of the curve as the parameter K 
increases, which suggests that the curve will tend to flatten with 
higher values of parameter K.

 

 

Table 2: Results of applying the optimal capacity buffers found with procedure Proc on the 
cost gap between the aggregate and detailed schedules 

 
 

Avg capacity 
buffers 

SD of capacity 
buffers 

Avg cost 
gap 

SD of cost 
gap 

K = 3 14,9% 7,4% -0,6% 3,7% 
N = 10 15,3% 9,0% 0,2% 1,4% 
N = 20 15,9% 8,1% -0,4% 1,6% 
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K = 10 18,9% 4,7% 0,0% 0,7% 
N = 10 19,4% 5,2% -0,1% 0,4% 
N = 20 19,9% 4,9% -0,1% 0,5% 
N = 50 17,5% 3,6% 0,1% 1,0% 

K = 20 20,0% 4,7% 0,1% 0,4% 
N = 10 19,7% 6,5% 0,0% 0,2% 
N = 20 21,2% 4,2% 0,0% 0,3% 
N = 50 19,0% 2,4% 0,2% 0,5% 

 
Error! Reference source not found. 

presents the cost gaps between the buffered 
aggregate schedules using the resulting 
optimal capacity buffers from the procedure 
Proc and the disaggregated schedules. 
Capacity buffers are expressed in percentage 
of the initial capacities. The table shows that 
parameter K has a clear influence on the 
capacity buffer sizes. In order to validate this 
observation, ANOVA was conducted on 
Statistica Software to analyze the effects of 
both parameters N and K. The analysis shows 
that both parameters have a significant 
impact on the buffer sizes with a greater 
impact of the parameter K (p-value of 

parameter K = 3,54E-14 versus a p-value of 
1,58E-03 for parameter N). Fig. 4 and Error! 
Reference source not found. report the 
mean values and the 95% confidence interval 
of the resource buffer sizes according to the 
values of the parameters N and K. We notice 
the clear and easily interpretable effect of 
parameter K in comparison to parameter N. 
Indeed, the buffer sizes increase with the 
increase of K. K is therefore the selected 
parameter Par (see Fig. 3). We also notice a 
decrease in the slope of the curve as the 
parameter K increases, which suggests that 
the curve will tend to flatten with higher 
values of parameter K.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Mean Plot of the Capacity Buffer Size grouped by number of WPs N 
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FIGURE 07. Mean Plot of the Capacity Buff er Size grouped by number of WPs N 

FIGURE 08. Mean Plot of the Capacity Buffer Size grouped by number of resource groups K

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Mean Plot of the Capacity Buffer Size grouped by number of resource groups K 

As depicted in Fig. 3, for each group of instances 
characterized by the same number of resource groups K, 

the resulting average buffer size is applied from the 
procedure Proc. As shown in Error! Reference source not 

found., the buffer sizes are as follows: 14.9% for the 
group of instances G3, 18.9% for the group G10 and 

20.0% for the group G20. The results of applying these 
average capacity buffers and resolving the RCCP model 

(Appendix 1) are reported in  

Table 3. Observe that the buffering strategy 
greatly reduces the gap between the cost 

estimates of the aggregate and disaggregate 
schedules, especially when the number of 
resource groups is important. However, an 
important dispersion of results is observed 
when the number of resource groups is very 
small: K = 3. Since we are interested in LSEC 
projects usually characterized by a large 
number of resource groups, this group of 
instances is not very relevant to the study. 

 

Table 3: Cost gaps between the buffered aggregate schedules and the disaggregate schedules 

 
 Average cost gap Standard deviation of cost gap 

K = 3 16,3% 71,0% 
N = 10 4,8% 38,1% 
N = 20 -0,3% 55,5% 
N = 50 44,5% 97,8% 

K = 10 0,5% 9,0% 
N = 10 -0,6% 7,0% 
N = 20 -1,4% 8,7% 
N = 50 4,7% 10,6% 

K = 20 0,0% 4,2% 
N = 10 0,5% 4,3% 
N = 20 -0,9% 3,9% 
N = 50 0,8% 4,4% 

 
 

Table 4:  The effect of an additional 1% capacity reduction on the cost gap between the 
aggregate and disaggregate schedules 

 Avg evolution of the cost 
gap 

SD of the evolution of the 
cost gap 

K = 3 8,8% 10,0% 
K = 10 2,2% 1,1% 
K = 20 1,1% 0,6% 
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As depicted in Fig. 6, for each group of instances characterized 
by the same number of resource groups K, the resulting average 
buffer size is applied from the procedure Proc. As shown in TABLE 
2, the buffer sizes are as follows: 14.9% for the group of instances 
G3, 18.9% for the group G10 and 20.0% for the group G20. The results 
of applying these average capacity buffers and resolving the RCCP 
model (APPENDIX 1) are reported in TABLE 3. Observe that the 
buffering strategy greatly reduces the gap between the cost estimates 
of the aggregate and disaggregate schedules, especially when the 
number of resource groups is important. However, an important 
dispersion of results is observed when the number of resource 
groups is very small: K = 3. Since we are interested in LSEC projects 
usually characterized by a large number of resource groups, this 
group of instances is not very relevant to the study.

In order to measure the effect of the imprecision in the estimation 
of capacity buffer sizes on the cost estimates, for each instance, the 
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effect of an additional 1% capacity reduction on the cost gap with 
the disaggregated schedule is measured. To illustrate the approach, 
let us suppose that the optimal capacity buffer size of an instance 
is 19% of the initial capacity. All the following buffer sizes were 
tested: 19%-5%, 19%-4% … 19%+5% and each time the cost gap 
with the disaggregated schedule was calculated. Then, the average 
evolution of this gap is calculated when the buffer size is increased 
by 1% of the initial capacity. Average results are reported in TABLE 4. 
Observe that a small inaccuracy in the estimation of capacity buffer 
sizes does not have a significant impact on the cost estimates for 
instances characterized by a large number of resource groups K. 
Based on this finding, together with the observation of the decrease 
in the slope of the curve in FIGURE 8, we suggest using the same 
buffer sizes for all project instances characterized by a number of 
resource groups greater than 20. However, it is better to validate 
this suggestion with additional tests. 

To conclude this section, the strategy presented seeks to define the 
adequate capacity buffer sizes to apply to the aggregate periods in the 
proactive approach. These buffers are solely based on the number 
of resource groups. These capacity buffers aim at counteracting 
the underestimation of project costs in aggregate planning levels 
caused by the disaggregation uncertainty of resource capacities. The 
proposed strategy suggests that the buffer sizes are more reliable for 
the instances characterized by a large number of resource groups. 

The next section presents the computational results of the simula-
tion-based experimental analysis that will evaluate the robustness and 
performance of the baseline schedules generated with the proposed 
proactive approach to confirm its effectiveness in an uncertain context.

--- 4.2 Simulation-based experimental analysis ---

In the simulation-based experimentations, the group of instances G3 
(K = 3) was eliminated and the two groups of instances G10 (K = 10) 
and G20 (K = 20) were kept since the study concerns large projects. 
The robustness and performance of the robust buffered aggregate 
schedules (referred to as B-Ag) generated with the proposed pro-
active approach are compared to those of the unbuffered aggregate 
schedules (referred to as U-Ag) to test the efficiency of the capacity 
buffering strategy. The reactive approach was also performed on the TABLE 05. Average results of the robustness cost function evaluation 

TABLE 03. Cost gaps between the buffered aggregate schedules and the disaggregate 
schedules 

TABLE 04. The effect of an additional 1% capacity reduction on the cost gap between 
the aggregate and disaggregate schedules

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5: Mean Plot of the Capacity Buffer Size grouped by number of resource groups K 

As depicted in Fig. 3, for each group of instances 
characterized by the same number of resource groups K, 

the resulting average buffer size is applied from the 
procedure Proc. As shown in Error! Reference source not 

found., the buffer sizes are as follows: 14.9% for the 
group of instances G3, 18.9% for the group G10 and 

20.0% for the group G20. The results of applying these 
average capacity buffers and resolving the RCCP model 

(Appendix 1) are reported in  

Table 3. Observe that the buffering strategy 
greatly reduces the gap between the cost 

estimates of the aggregate and disaggregate 
schedules, especially when the number of 
resource groups is important. However, an 
important dispersion of results is observed 
when the number of resource groups is very 
small: K = 3. Since we are interested in LSEC 
projects usually characterized by a large 
number of resource groups, this group of 
instances is not very relevant to the study. 

 

Table 3: Cost gaps between the buffered aggregate schedules and the disaggregate schedules 

 
 Average cost gap Standard deviation of cost gap 

K = 3 16,3% 71,0% 
N = 10 4,8% 38,1% 
N = 20 -0,3% 55,5% 
N = 50 44,5% 97,8% 

K = 10 0,5% 9,0% 
N = 10 -0,6% 7,0% 
N = 20 -1,4% 8,7% 
N = 50 4,7% 10,6% 

K = 20 0,0% 4,2% 
N = 10 0,5% 4,3% 
N = 20 -0,9% 3,9% 
N = 50 0,8% 4,4% 

 
 

Table 4:  The effect of an additional 1% capacity reduction on the cost gap between the 
aggregate and disaggregate schedules 

 Avg evolution of the cost 
gap 

SD of the evolution of the 
cost gap 

K = 3 8,8% 10,0% 
K = 10 2,2% 1,1% 
K = 20 1,1% 0,6% 
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Fig. 5: Mean Plot of the Capacity Buffer Size grouped by number of resource groups K 

As depicted in Fig. 3, for each group of instances 
characterized by the same number of resource groups K, 

the resulting average buffer size is applied from the 
procedure Proc. As shown in Error! Reference source not 

found., the buffer sizes are as follows: 14.9% for the 
group of instances G3, 18.9% for the group G10 and 

20.0% for the group G20. The results of applying these 
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Table 3. Observe that the buffering strategy 
greatly reduces the gap between the cost 

estimates of the aggregate and disaggregate 
schedules, especially when the number of 
resource groups is important. However, an 
important dispersion of results is observed 
when the number of resource groups is very 
small: K = 3. Since we are interested in LSEC 
projects usually characterized by a large 
number of resource groups, this group of 
instances is not very relevant to the study. 
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Table 4:  The effect of an additional 1% capacity reduction on the cost gap between the 
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disaggregated schedules (referred to as Det) obtained by resolving the RCCP model (APPENDIX 
1) on the detailed base instances of De Boer (1998) with the most probable values of WP work 
contents in order to distinguish between the effect of the uncertainty in WP work contents and 
the effect of the disaggregation uncertainty of capacities. When applying the reactive approach to 
the disaggregated schedules, the remaining horizon at the decision points is always decomposed 
into equal one-week periods. As for the unbuffered aggregate schedules, no buffering is applied 
throughout the reactive approach. 

TABLE 5 reports the average results of the robustness cost function evaluation. Between the 
buffered (B-Ag) and unbuffered (U-Ag) aggregate schedules, notice the great influence of the 
capacity buffering strategy. Indeed, the cost variations have been considerably reduced. In the 
detailed schedules (Det), the disaggregation uncertainty is absent, only the uncertainty in WP work 
contents influences the robustness cost function. Therefore, by comparing the robustness of the 
unbuffered aggregate schedules (U-Ag) with the robustness of the detailed schedules (Det), one 
can see that the disaggregation uncertainty is the uncertainty that most influences the robustness 
cost function. The work contents uncertainty has a minimal impact in comparison. The proposed 
proactive strategy allows to obtain comparable cost variations with the detailed schedules (B-Ag 
vs. Det), especially for instances characterized by a large number of resource groups (K = 20). 
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Table 5: Average results of the robustness cost function evaluation 
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E(cost%) 
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deviation of 
E(cost%) 
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E(cost%) 

Average 
E(cost%) 
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E(cost%) 

K = 10 7,0% 11,1% 74,2% 77,3% -1,5% 7,3% 
N = 10 4,7% 8,7% 35,0% 21,6% 0,3% 0,5% 
N = 20 8,5% 11,5% 58,4% 37,8% 0,6% 1,0% 
N = 50 7,8% 12,7% 129,1% 106,6% -5,3% 11,8% 

K = 20 3,2% 4,4% 31,1% 17,4% -0,8% 3,1% 
N = 10 2,0% 4,2% 16,7% 6,6% 0,2% 0,3% 
N = 20 3,8% 3,5% 26,1% 5,5% 0,1% 0,5% 
N = 50 3,8% 5,0% 50,4% 15,0% -2,6% 4,8% 

 
 

Table 6: Comparison of the costs of the realized schedules 

 U-Ag vs. B-Ag Det vs. B-Ag 
 Avg realized cost 

variation (Var1) 
SD of realized cost 

variation 
Avg realized cost 
variation (Var2) 

SD of realized cost 
variation 

K = 10 -0,2% 3,2% -6,3% 4,5% 
N = 10 0,0% 1,9% -3,3% 2,4% 
N = 20 -0,1% 2,9% -5,6% 3,4% 
N = 50 -0,5% 4,3% -9,9% 4,7% 

K = 20 -0,1% 1,2% -3,1% 2,1% 
N = 10 -0,1% 0,9% -1,8% 1,5% 
N = 20 -0,1% 0,8% -2,8% 1,6% 
N = 50 -0,2% 1,8% -4,7% 2,0% 

 
Table 7: Experimental parameter settings 

Level of WP work 
content uncertainty High Medium Low 

Value of parameter α 0,5 0,25 0,1 

 

TABLE 06. Comparison of the costs of the realized schedule

TABLE 07. Experimental parameter settings

variations less than 4.3% and an acceptable dispersion of results for all uncertainty levels under 
±25%. For the ± 50% uncertainty level, we observe a slight increase in average cost variations. 
However, this level of uncertainty is rarely reached in practice. Note the non-zero average cost 
variation of the disaggregated approach Det for the ± 0% uncertainty level. This is a result of 
some instances that do not reach optimality in the CPLEX optimisations. 

As in TABLE 6, TABLE 9 compares the costs of the realized schedules obtained with the different 
approaches (B-Ag, U-Ag, Det) but this time for all levels of uncertainty in WP work contents and 
only for the subset of largest instances (K = 20 and N = 50). Again, we observe that the uncertain-
ty in WP work contents does not have a significant impact on the performance of the realized 
schedules. For all uncertainty levels, the realized project costs by the buffered aggregate approach 
are very similar to the unbuffered approach and comparable to the disaggregated approach 
with an average variation of less than 5.1%. These results prove that the proposed proactive 
approach has a good performance, regardless of the level of uncertainty in WP work contents.

5. CONCLUSION
---------------------
In this paper, a robust planning approach for tactical planning of large scale engineering and 
construction (LSEC) projects is proposed. At this planning level, planners tend to use aggregate 
planning techniques in order to provide high-level schedules to the client. The proposed approach 
relies on a simple strategy of keeping a resource buffer on the aggregate periods by lowering the 
capacity levels by an adequate amount. As the project advances, periods and capacities over peri-
ods are gradually disaggregated as more accurate estimates become available. We found that the 
adequate resource buffer size is 20% of the original estimated capacity on the aggregate periods 
for instances with a large number of resource groups. However, this result has only been validated 
for a disaggregation factor of four. More tests should be conducted to study the influence of the 
disaggregation factor on the resource buffer size. 
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An extensive simulation-based experiment on a large RCCP benchmark set 
of project instances proved that the proposed approach is very effective 
in dealing with the disaggregation uncertainty of resource capacities 
characterizing the tactical planning level. It considerably improves the 
robustness of the generated aggregate schedules. Indeed, the study 
reveals a robustness improvement by an approximate factor of 10 in 
comparison to the unbuffered aggregate approach. The robustness and 
performance of the proposed aggregate approach is also comparable 
with a disaggregated detailed approach (a disaggregation factor of four) 
especially for instances characterized by a large number of resource 
groups. The proposed approach also proves to be effective whatever 
the level of uncertainty in WP work contents which do not have a 
significant impact in comparison to the disaggregation uncertainty of 
resource capacities. Although a small increase in cost variations was 
observed for the highest level of uncertainty in WP work contents, this 
uncertainty level is rarely reached in practice. 

We therefore conclude on the significance of the proposed robust 
planning approach in dealing with the uncertainties characterizing 
the tactical level of LSEC projects, while keeping the planning effort to 
a minimum. The approach can provide tight and reliable project cost 
estimates at project phases where the lack of information and uncertainty 
level are still high especially for the work planned for further periods. 
Future research avenues would be to test the influence of the disag-
gregation factor on the resource buffer sizes, and to test the relevance 
of the proposed approach for other types of disaggregation, especially 
the disaggregation of WPs into smaller activities. However, we should 
note that the consideration of uncertainty in WP work contents in the 
proposed reactive simulation approach is an indirect way to consider 
the disaggregation uncertainty of WPs. It would also be interesting to 
test the proposed approach on real projects.
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Table 8 reports the average results of the 
robustness cost function evaluation. Observe 
that whatever the method used to generate the 
baseline schedules, the level of uncertainty in 
WP work contents does not have a significant 
impact on the robustness cost function. For 
instance, for the unbuffered aggregate 
schedules (U-Ag), even without any 
variability in WP work contents, cost 
variations are obtained with an order of 
magnitude of 50% as for the ± 50% 
uncertainty level in WP work contents. This 
finding consolidate the earlier observations 
from Table 5 that the disaggregation 
uncertainty of resource capacities is the main 
cause of cost variations. Concerning the 
baseline schedules obtained with the 
proposed proactive approach, we obtain 
average cost variations less than 4.3% and an 
acceptable dispersion of results for all 
uncertainty levels under ±25%. For the ± 
50% uncertainty level, we observe a slight 
increase in average cost variations. However, 

this level of uncertainty is rarely reached in 
practice. Note the non-zero average cost 
variation of the disaggregated approach Det 
for the ± 0% uncertainty level. This is a result 
of some instances that do not reach optimality 
in the CPLEX optimisations. 

As in Table 6, Table 9 compares the costs 
of the realized schedules obtained with the 
different approaches (B-Ag, U-Ag, Det) but 
this time for all levels of uncertainty in WP 
work contents and only for the subset of 
largest instances (K = 20 and N = 50). Again, 
we observe that the uncertainty in WP work 
contents does not have a significant impact 
on the performance of the realized schedules. 
For all uncertainty levels, the realized project 
costs by the buffered aggregate approach are 
very similar to the unbuffered approach and 
comparable to the disaggregated approach 
with an average variation of less than 5.1%. 
These results prove that the proposed 
proactive approach has a good performance, 
regardless of the level of uncertainty in WP 
work contents. 
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APPENDIX 1 
The notations of sets, parameters, and variables are presented in Table 10. 
 

Table 10: Nomenclature: sets, parameters, and variables 

Sets 

P Set of time periods (p ∈ P) 

I Set of work packages (i ∈ I) 

R Set of resource groups (r ∈ R)  

Predi Set of predecessors of WP i 

Parameters 

Dp Duration of period p (in weeks) 

H Time horizon:  

RDi Release date of WP i 

Qimax Maximum workload that can be assigned to i during one week 

Qri Required workload of WP i on resource group r 

Krp Available capacity of resource group r during period p 

Variables 

tsi , tfi Start time and finish time of WP i 

zsip Binary variable that equals 1 if tsi is in period p or before 

zfip Binary variable that equals 1 if tfi is in period p or before 

dip Duration of WP i within the period p (0 ≤ dip ≤ Dp) 

xip Intensity (fraction performed) of WP i in period p (0 ≤ xip ≤ 1) 

yintrp Internal load of resource r in period p 
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Table 11: Nomenclature of the variables and parameters introduced in the simulation 
algorithm 

Variables and parameters Description 

Tsicplex , Tficplex Start time and finish time of WP i according to the projected schedule 

Tsitmp , Tfitmp Temporary start time and finish time of WP i 

Tsi , Tfi Start time and finish time of WP i in the realized schedule 

Q’ri Real required workload of WP i on resource r 

αi Modification factor of the work content of WP i (Q’ri = αi*Qri ∀ ∈ ) 

xrip Real intensity of WP i in period p 

succi Successor of WP i 
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APPENDIX 2
---------------------

APPENDIX 1
---------------------

The objective of the model (1) is to minimize the project 
cost. Constraints (2) to (4) position WP start times with 
regards to periods based on binary variables zsip. Equivalent 
constraints are used to situate WP end times tfi using binary 
variables zfip. Constraints (5) to (9) define WP durations 
over periods dip based on the binary variables and WP start 
and end times. Constraints (10) ensure the respect of WPs 
release dates and constraints (11) the respect of precedence 
constraints. Constraints (12) ensure the respect of the max-
imum allowed workload per WP. Constraints (13) ensure 
the realization of the total required workload per WP. For 
each resource group and period, constraints (14) ensure 
that the sum of the internal and external loads corresponds 
to the total assigned workload to all WPs. The external load 
corresponds to the fraction of workload over the regular 
capacity limit. Constraints (15) ensure the respect of the 
capacities by the internal loads.

• APPENDIX •

 

 

APPENDIX 1 
The notations of sets, parameters, and variables are presented in Table 10. 
 

Table 10: Nomenclature: sets, parameters, and variables 

Sets 

P Set of time periods (p ∈ P) 

I Set of work packages (i ∈ I) 

R Set of resource groups (r ∈ R)  

Predi Set of predecessors of WP i 

Parameters 

Dp Duration of period p (in weeks) 

H Time horizon:  

RDi Release date of WP i 

Qimax Maximum workload that can be assigned to i during one week 

Qri Required workload of WP i on resource group r 

Krp Available capacity of resource group r during period p 

Variables 

tsi , tfi Start time and finish time of WP i 

zsip Binary variable that equals 1 if tsi is in period p or before 

zfip Binary variable that equals 1 if tfi is in period p or before 

dip Duration of WP i within the period p (0 ≤ dip ≤ Dp) 

xip Intensity (fraction performed) of WP i in period p (0 ≤ xip ≤ 1) 

yintrp Internal load of resource r in period p 

yextrp External load of resource r in period p 

 
The RCCP model is as follows: 
 Minimize rpr R p P

yext
      (1) 

Subject to: 
  1

* 1        ,p
i k ipk

ts D zs i I p P


       (2) 

    1 1
* 1        ,p p

i k k ipk k
ts D H D zs i I p P

 
          (3) 

 
1       , ip ipzs zs i I p P      (4) 

  1*        ,ip p ip ipd D zs zf i I p P       (5) 

  1*        ,ip p ip ipd D zs zf i I p P       (6) 

pp P
H D




 

 

  11
* * 1        ,p

ip i k p ip ipk
d tf D D zs H zf i I p P

          (7) 

  11
       * 1 * ,p

ip k ip i p ipk
d D zs ts D zf i I p P

         (8) 

        ip i ip P
d tf ts i I


      (9) 

        i its RD i I     (10) 

        ,i j its tf i I j Pred      (11) 

       * * , max
ip ri i ipr R

x Q Q d i I p P


      (12) 

 1       ipp P
x i I


     (13) 

 *        ,rp rp ip rii I
r R p Pyint yext x Q


      (14) 

        ,rp rp r R p Pyint K      (15) 

  , 0,1        ,ip ipzs zf i I p P      (16) 

 all variables 0   (17) 

 
The objective of the model Error! Reference source not found.
￼Error! Reference source not found. position WP stError! Reference source not found.
zsip. Equivalent constraints are used to situate WP end times tfi using binary variables zfip. 
Constraints  to ￼Error! Reference source not found. WP durations over periods 
Error! Reference source not found. based on the binary variables and WP start and end 
times. Constraints ￼ ensure the respect of WPs release dates 
andError! Reference source not found.onstraints ￼ the respect of precedence constraints. 
Constraints ￼ ensure the respect ofError! Reference source not found.. Constraints 
￼Error! Reference source not found. the total required workload per WP. For each 
resourceError! Reference source not found.period, constraints ￼ ensure that the sum of the 
internal and external loads corresponds to the total assigned workload to all WPs. The 
external load corresponds to the Error! Reference source not found.workload over the 
regular capacity limit. Constraints ￼ ensure the respect of the capacities by the internal loads. 
of workload over the regular capacity limit. Constraints Error! Reference source not found. 
ensure the respect of the capacities by the internal loads. 
 
 
 
 
 
 
 
 
 
 
 

 

 

  11
* * 1        ,p

ip i k p ip ipk
d tf D D zs H zf i I p P

          (7) 

  11
       * 1 * ,p

ip k ip i p ipk
d D zs ts D zf i I p P

         (8) 

        ip i ip P
d tf ts i I


      (9) 

        i its RD i I     (10) 

        ,i j its tf i I j Pred      (11) 

       * * , max
ip ri i ipr R

x Q Q d i I p P


      (12) 

 1       ipp P
x i I


     (13) 

 *        ,rp rp ip rii I
r R p Pyint yext x Q


      (14) 

        ,rp rp r R p Pyint K      (15) 

  , 0,1        ,ip ipzs zf i I p P      (16) 

 all variables 0   (17) 

 
The objective of the model Error! Reference source not found.
￼Error! Reference source not found. position WP stError! Reference source not found.
zsip. Equivalent constraints are used to situate WP end times tfi using binary variables zfip. 
Constraints  to ￼Error! Reference source not found. WP durations over periods 
Error! Reference source not found. based on the binary variables and WP start and end 
times. Constraints ￼ ensure the respect of WPs release dates 
andError! Reference source not found.onstraints ￼ the respect of precedence constraints. 
Constraints ￼ ensure the respect ofError! Reference source not found.. Constraints 
￼Error! Reference source not found. the total required workload per WP. For each 
resourceError! Reference source not found.period, constraints ￼ ensure that the sum of the 
internal and external loads corresponds to the total assigned workload to all WPs. The 
external load corresponds to the Error! Reference source not found.workload over the 
regular capacity limit. Constraints ￼ ensure the respect of the capacities by the internal loads. 
of workload over the regular capacity limit. Constraints Error! Reference source not found. 
ensure the respect of the capacities by the internal loads. 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 09. Simulation algorithm on period p between the decision points tdp-1 and tdp
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