kEYwords

BEE INSPIRED ROUTE MANAGEMENT APPROACH AND USE OF INTERNET OF THINGS

ROUTE AND SUPPLY CHAIN MANAGEMEN

Route management (RM) can be defined as a Route mas to find the linkage and coordinate between the organization and other parties such as commuters, suppliers, manufacturers, dealers and customers to synchronize the efforts to meet the project needs with minimal use of time and resources (Christopher, 2016). RM is a subset of Supply Chain Management (SCM) where a supply chain consists of sequential activities of production, storage and distribution where each indi-
vidual process is often planned and optimized using predetermined decisions from its preceding activities (Adulyasak, Cordeau, \& Jans, 2015). An integrated supply chain operational planning system is a tool that issued to jointly optimize several planning decisions thereby capturing the additional benefits of coordination between sequential activities in the chain. Effective RM aptivity improve stakeholder's flexibility and better adaptation to project environment changes.
RM helps logistics operators perform integrated routing and scheduling to minimize empty vehicle movements. The solutions of RM play an important role in overcoming problems in SCM and assist stakeholders in achieving operational efficiency (Awasthi, Adetiloye, \& Crainic, 2016). Supply chain has become more complex over the years and lots of problems arise from it (Stevens \& Johnson, 2016). Due to the increase in complexity of supply chain network, the efficiency of delivery service has become a very important part RM solution, the delivery system in supply chain RM solution, the delivery system in supply chain
process can be planned in a more efficient manner where a better route can be taken to decrease the delivery time at the lowest operating cost possible (Tseng, Yue, \& Taylor, 2005).
Many organizations turn to high profile fleet Many organzement solutions that are tailored to their needs (Danesh, n.d.). Fleet management and control systems provide information that is useful to

KAH HUO LEONG

Ph.D. in Project Management candidate
University of Malaya and Wales, Kuala Lumpur, Malásia
leong@expresswebdev.com

HAMZAH ABDUL-RAHMAN

PhD. - Vice-Chancellor of the International University of Malaya-Wale University of Malaya and Wales, Kuala Lumpur, Malásia larhamzah@iumw.edu.my

DR. CHEN WANG

Professor at the Huagiao University
University of Malaya and Wales, Kuala Lumpur, Malásia
wcisabigguy@gmail.com

SIAW-CHUING LOO

PhD. - Senior Lecturer University of Malaya
-University of Malaya and Wales, Kuala Lumpur, Malásia - slawchuingg@um.edumy

- ABSTRACT•

Railway system (RS) is becoming a necessity and one of the popular choices of transportation among people, especially for business practitioners that operating and people living in the urban cities. The urbanization and population increase due to rapid development of the economy in the major cities are leading to a bigger demand for urban rail transit. The RS network expansion is necessary to cope with the increasing demand. tends to increase due to the expansion of the system in accommodating the increase in demand. Despite Railway Traveling Salesman Problem (RTSP) being a popular variant of routing problems, it appears that the universal formula or technique to solve the identified problems are yet to be found. The problem is easily recognized but proven to be difficult and impractical to solve without using the right approach. This paper pre sents a novel route management approach that was inspired by
the way bees forage and share experience in a colony to solve Railway System Travelling Salesman Problem. It also discusses the results obtained from a test conducted to evaluate RS users route planning efficiency and how Internet of Things (IoT) can enhance the quality of the output. The approach has bee tested and verified by comparing the results with one hundred RTSP exact solutions generated by using Malaysia RS dataset.
automate product pickup and delivery process. Thus, companies that lead their activities on distributing goods are looking into finding ways to reduce transport costs and optimizing hired resources. SCM implementation enabled companies to plan the drop off routes of their products in the most cost-effective and in a timely manner despite the increase in demands or product volume. TSP solu-
tion is also vital in the planning and risk management aspects of SCM. Periodic assessments and redesigns are often needed in order to stay as efficient and effective as possible. In the end of year 2016, China and Japan have conducted multiple experiments and trials to deliver goods via RS (An, 2016; Ito \& Okuda, 2016). All of these justify the need to manage the complexity of RS route planning in order to get a fruitful return by using the increasingly popular mode of transportation.

RAILWAY SYSTEM

Railway System (RS) is defined as a commercial organization responsible for operating a system of transportation for trains carrying passengers or freight (Azzadeh, Ghaderi, \& Izadbakhsh, 2008). Cited from Macmillan dictionary, there are more than 30 types of RS in the world. For instance, light railway transit, monorail, subway, underground, bullettrain and mass railway transit. From the literature, little attention has been devoted to RS transportation even though it has been a main transportation mode those who live in urban cities (Gonsalves \& Shiozaki. 2015). Urbanization and increasing population due to rapid development of economy in many cities are leading to a bigger demand for urban rail transit (Zhu, Mao, Liu, \& Li, 2015). As a result of high demand, many cities are making rail transit more efficient. The attractive advantage of rail that causes the increase in demand includes providing a faster, more comfortable and quieter traveling experience (Young, 2014).
Some of the RSs have complex network design, with hundreds of stations, lines and interchanges. For example, Netherlands Railways operates about 5,000 passenger trains on a railway network of 2,800 to 325,000 kilometres (Vromans, 2005). There are about 1,000,000 passenger journeys each day, with an average distance of 44 km . The crisscross network of 100 different train lines along 380 stations ensures that almost 80% of the passenger trips are made without transit. Another example is the New York City Subway. According to the Metropolitan Transportation Authority it is the largest subway system in the world with 422 stations. In 2013 , the subway delivered over 1.71 billion rides, about 2.6 million rides on Sundays (MTA:Subway Ridership At Highest Level Since 1950" 2012)
When the RS network is expanded, choosing the shortest route to multiple destinations will be difficult due to the complexity of the network design (Dušan Teodorovic \& Nikolic, 2013). Too many ber of the interchange station will increase the travel time due to the transits involve (Hernandez \& Monzon, 2016). RS poses a multitude of interesting optimization problem (Devaki. Prabhakar \& Kumar, 2016). Route planning is ineffective without sufficient information especially when no tool is available to aid such process. Due to the complexity of rail transportation in major cities, most of the passengers only plan their journey through experience without referring to the map (Qiao, Zhao \& Qin, 2013). Hence, obtaining optimum route to the desired station(s) will be difficult to achieve. Adding as little as two extra stations to visit in a tour may increase the possible routes to complete the tour significantly (Larose, 2014). Hence, with the use of right RM approach, users will able to plan their route in a more effective way (Li, Zhao, \& Zhou 2016)

SWARM INTELLIGENCE

Beni and Wang introduced the Swarm Intelligence (SI) in 1989 and defined as the emergent collective intelligence of groups (Bonabeau, Dorigo\& Theraulaz, 1999). It is also broadly defined as a group of individuals acting collectively in ways that seem intelligent and often inspired by natural or artificial process (Bianchi, Dorigo, Gambardella, \& Gutjahr, 2009). Swarm-based algorithms are population-based algorithms that are able to produce low cost, fast, and robust solutions to several complex problems
(Panigrahi, Shi \& Lim, 2011). The way collective intelligence is used in the colony to make better decisions were many researchers to solve various complex problems especially in engineering, operations and management related fields (Nikolí \& Teodorović, 2013; Yuce, Packianather, Mastrocinque, Pham $\&$ Lambiase, 2013). Over the years, researchers have used various methods to produce solution to
routing and optimization problems. Some of the popular swarm intelligence optimization methods introduced to solve routing problems were inspired by the way birds, fish, ant, bees, termites, bats and
fireflies work in group Optimization algorithm can be defined as methods with the objective to identify the best answer to a problem subject to a set of given constraints (Mastrocinque, Yuce, Lambiase, \& Packianather, 2013).
SI is practically a concept where it is inspired by nature and motivated by normal bio systems connature and motivated by normal bio systems con-
sist of living things like termites, bees, ants, birds and fish in a populations (llie, 2014). SI is also one of the Artificial Intelligence techniques that use the collective behavioural patterns to supportively accomplish a task and widely used to solve many real world problems such as optimization problem, finding optimal routes, scheduling image and data
analysis (Belal, Gaber El-Sayed \& Almojel, 2005 ; analysis (Belal, Gaber, El-Sayed \& Almojel, 2005;
Engelbrecht, 2007). These entities communicate with each other with certain behavioural patterns with each other with certain behavioural patterns
to execute tasks, in order for them to ensure their survival. These communications can be direct or indirect such as the bee performing a waggle dance or the ant that leaves pheromone trails. One of the most popular and effective SI to solve optimization roblem is the bee algorithm.
Due to the capability of SI in solving complex problems, it has been used as an approach to solve optimization problems. Ilie (2014) said heuristic by na-
ture means SI could generate an optimum solution or approximately best solution in reasonable time. or approximately best solution in reasonable time.
SI uses local populations that interact naturally with the environment to generate optimal solutions and two ways communication model to accomplish tasks described as follows
i) Get better solution, the entities communicate with the environment in order to help each other. For example, Ant Colony Optimization, Bee Colony Optimization
ii) Improve existing starting solutions, the entities will communicate within the solution space timization, Cat Swarm Optimization.
Besides, there are characteristics owned by swarming entities identified by Bonabeau and Meyer in 2001 that can help in solving TSP. The entities are:
i) Flexibility where the entities can adapt to environment changing
ii) Robustness when the group can still succeed even though there are one or more entity does not achieve their tasks
iii) Self-organization where the tasks are not main ly controlled or locally supervised.

BEE INSPIRED ALGORITHM

In recent studies conducted by Nikolic and Teodorovic (2014), they highlighted that in order to design an effective transit network, several issues need to b solved in order to increase number of satisfied users and at the same time reduce the total time to complete a tour. The optimal solution of transit networ design is difficult to find which makes it fall under the class of hard combinato-
rial optimization problem. It is difficult to be solved without a proper method rial optimization problem. It is difficult to be solved without a proper metho optimization and swarm-based algorithm which is based on the bees foragin technique. It is capable of solving deterministic combinatorial problems and combinatorial problems that are characterized by uncertainty (Teodorovic \& Orco, 2005). According to the Bee Colony Optimization (BCO) concept proposed by Teodorovic, bees would investigate through the search space for feasible solutions, collaborate and exchange information after each visit to the food sore.. he collective intelligence enhances the solutions produced by reducing solutions can be improvised atter more promising areas. Therefore, the likely to be the bestone.Intensification and diversification are the 2 importan characteristics of BCO where intensification is the process of selecting the best candidates from the best solutions gathered and diversification is to ensure that the algorithm works efficiently by exploring the search space randomly ($a n g$ 2014).In genera, all bee inspired algorithms have similar concept but

Initialization: an empty solution is assigned to every be
2. For every bee // the forward pass
i. Set $\mathrm{k}=1 /$ counter for constructive moves in the forward pass ii. Evaluate all possible constructive moves iii. According to evaluation, choose one move in using the roulette wheel
3. All bees are back to the hive // backward pass starts
4. Evaluate (partial) objective function value for each bee

Every bee decides randomb to continue its own exploration and become a recruiter or become a follower
6. For every follower, choose a new solution from recruiter by the oulette wheel
7. If solutions are not completed, Go to Step 2
8. Evaluate all solutions and find the best one
9. If the stopping condition is not met, Go to Step 2

The general idea of BCO is constructing multi agent system that consists of artificial bees in a colony, where the best solution will be identified during searchers to design various algorithms and solutions to solve difficult combinatorial optimization problems such as TSP (Dušan Teodorovic, 2009) Although several social insect species based algorithms have successfully solved various complex problems, Teodorovic claimed that bee behaviour in nature has inspired more significant solutions to the problems. Bees adap their behaviour according to the environment to accomplish a task by using
collective intelligence (Aghazadeh \& Meybodi, 2011). For instance honeybee
colony is distributed in multiple directions for long distances at the same ime to find more food sources (Mittal, S., Nirwal, N., \& Sardana, 2014). The deployment of its foragers to better fields is the success criteria of the bee plenty The bee colony follows the rules that it the flower was patched with vice versa Food and foragers are the two important criteria in a bee system (Baykasoùlu, Özbakrr, \& Tapkan, 2007).

RAILWAY TRAVELING SALESMAN PROBLEM

Railway Traveling Salesman Problem (RTSP) represents practical extensions of the classic Traveling Salesman Problem in consideration of a railway network and train schedules (Hu \& Raidl, 2008). For instance, a salesman uses railway network to visit multiple cities to carry out business, starting and ending at Tsagoouris \& Zand having the optimal tour (Hadijicharalambous, Pop, Pyrga, Traveling Salesaroliagis, 2007). The RTSP is NP-hard and it is related to the concept of TSP, RSTP allows stations to be visited more than once because it is inconvenient to restrict the usage of some backbone stations and to enforce the salesman to take alternative (Hu \& Raidl, 2008). The goal of solving RTSP is to ind set of train connections that can lead to the reduction of overall travelling time and cost using railway network (Hadjicharalambous et al, 2007; Matai, ngh \& Mittal, 2010). In solving RTSP, timetable information comprising data concerning the trains, stations, connecting stations, departure and arrival time of trains at the stations in a RS is needed to generate a useful output. The TSP uses the given railway network and train sch dule to minimize the overal journey time (Gonsalves \& Shiozaki, 2015).

RESEARCH METHODOLOGY

A novel RM approach has been developed and presented in this paper to help RS users, researchers and business practitioners toidentify the steps required to obtain the optimum route to multiple desired destinations in a complex $R S$ network and improve the management of triple constraint in projects that involve routing problems. In the preliminary stage of the research, a survey review are feasible for research, which helped to assess the effectiveness of users in identifying the optimum route via the RS, without the usage of any tools. The perceptions of different stakeholders on the research topic were explored by analysing the data collected from the survey. Experiment with one hundred RTSP cases was designed by using Malaysia RS datasets to verify and evaluate the efficiency of the approach under a controlled environment. Besides, computational experiment with five hundred TSP cases was conducted te test the relibility of

NOVEL BEE INSPIRED APPROACH IN RS RM
Solving RTSP by using exhaustive search methods is possible but not pracefficient solution to the general case of TSP has been found yet (Osaba, etal, 2015). In spite of the computational difficulty of the problem various known techniques have been introduced by researchers to generate the best solution to the problem. The Figure 1 shows the conception view of the way bee work in colony to make a better decision in route planning when they forage. The framework shows in Figure 2 was derived from the concept presented (Figure 1). The framework serves as a guide to identify optimum route to a single or
multiple destination via RS.

FIGURE 01. Bee concept I sed to locate the optimum route to multiple stations in the tour

Table 2 shows the symbols and variables used in the framework and Table 3 presents the processes involved in the approach to generate an output.

SYMBOL	Name	Function
Y	YES	Process met the condition
N	No	Process failed to meet the condition
i	Desired station's number	Used to check conditional satemen for new path lopit
z	Total number of desired stations	As maximum condition in new path loping
s	Starting point	Indicates starting stationpoint
G	Desired staion(s)	As desired destinationstation(s)
IC	Interchange station	Interchange station to explore more possible routes
m, ${ }^{\text {j }}$	Number of possible routes	Indicate number of possille routes
n	Number of spread bees	As number of spread bess
Ns	Differences in number of station between IC to $\mathrm{G} /$ multiple G	In certain situation, used to compare and check which routes is the best
Ts	Differences in time travelled for compared routes	In certain situation, used to compare and check which routes is the best
st	Temporary Sarting point	Indicate temporary staring point
	BIE 02. Smmols and varialles ssedil ithe framewoik (continues on the next pagg)	

BEE INSPIRED RM FRAMEWORK
The objective function for this mathematical model (MM)(Equation 1) is to find the optimum route that has minimum travel time. This is a summation of T_{sc} andX S_{sc}, where SG represents as node S to node G. This summation will keep increasing and repeating until m, where m represents number of stations. Furthermore, the value of $X_{s c}$ depending on the travel time from node S to G is included in the route, that is the shortest travel time in comparison with other routes.

Min

$Z=\sum^{\mathrm{m}}{ }_{\mathrm{s}=1} \sum_{\mathrm{m}=1}^{\mathrm{m}} T_{\mathrm{SG}} X_{\mathrm{sc}}$ where $\mathrm{S} \neq \mathrm{G}$
Parameter:
m : total number of station
n : number of routes
S: starting point or end station
G: stations that stop or destination
$T_{s c}$: travel time from node S to node G
X_{sc} : If the travel time for node S to G is included in the route, that is shortest travel time after comparing with other routes, then the value of X_{SG} is 1 .
Otherwise, the value of $X_{s 6}$ is 0 .
T_{w} : walking time from one station to another station in the interchange
There are the five constraints to be considered in the MM derived from the Framework.

FIGURE 02. Flowchat of of inding the ontimum rout

Process Description
1 Initialization $\mathrm{S}=$ starting point and ending point, desired destinations G , station names and travel time will be stored in the list of T, n denotes as the number of bees spread, total number of desired destinations $=Z$, number of possible route $=\mathrm{m} / \mathrm{r}$.
Initialize ias zero.
3 Check conditional statement, repeat until i less than number of desired destination $(\mathrm{i}<\mathrm{Z})$.
3.A Checking line of S
3.B When all of the processes from [3] is finished, display the list of station that is stored in list T and total time travel calculated.
Check whether S is interchange.
5 check number of possible routes, denote as m, Check any possible route.
6 If any possible route, then check whether m is greater than or equal to 6 lines
6.A If $m \geq 6$ lines, then choose partial possible routes randomly, except for G identified
6.B If $m<6$, then choose all possible routes
$\begin{array}{lll}7 & \text { Spread } \mathrm{n} \text { bees according to explore beter routes }\end{array}$
$8 \quad$ Initialize $\mathrm{j}=0$
$9 \quad$ Repeat until jequal to number of possible routes $(\mathrm{j}=\mathrm{n})$
10 Check whether any G along the route
10.A Check if any G found in the previous path

11 If any G along the route, then check whether more than 1 possible route connected to any $\mathrm{G} /$ multiple G
11.A If more than 1 possile route connected to any $\mathrm{G} / \mathrm{multiple} \mathrm{G}$, then calculate travel time from IC to G
11.A. 1 Check number of station between IC to G multiple G
11.A. 2 Calculate travel time difference for routes, denote as Ts
11.A. 3 Calculate the difference in number of station for routes, denote as Ns
11.B Choose the previous route which G is found
12. Check whether $\mathrm{N} \mathrm{s}>$ Ts
12.A.1 If $\mathrm{Ns}>\mathrm{T} \mathrm{s}$, then add 1 minute as train stopping time for each route
12.A. 2 Calculate temporary travel time for routes from IC to G , denote as t
12.A.3 Compare the temporary travel time
12.A. 4 Choose shortest temporary travel time
12.A. 5 Calculate travel time (S to IC to G) being chosen, denote as T 2
12.B. 1 If $\mathrm{Ns} \leq \mathrm{Ts}$, then ignored the train stopping time
12.B. 2 Calculate travel time from S to IC to G , denote as T 2

13 Compare Tl and T2
14 Choose shortest travel time
15 Check nearest Interchange station IC
15.A If need to move to another line, then add 5 minute as walking time, denote as T_W
15.B If NOT neded to move to another line, then neglected 5 minutes as walking time
15.C Calculate travel time from S to IC
15.D Set IC as temporary S

16 If S is not an interchange, check whether G is found on the same line
16.A If G found on the same line as S , then calculate travel time, denote as T

17 Check whether $I C$ found between G and S
17. A If IC found between G and S , then check possible routes for $\mathrm{G} /$ multiple G in different lines 17.B. 1 Record travel time, denote as Tn
17.B. 2 Set new starting point as new S

TABEIE 03. Processes in the framevo

1. Possible routes to desired destinations -
$\mathrm{P}_{\mathrm{i}}= \begin{cases}\text { number of routes, } \mathrm{n}, & \mathrm{N}<6 \text { (a) } \\ 0.5 * \text { number of routes, } \mathrm{n}, & \mathrm{N} \geq 6\end{cases}$
---2 . Walking time
$T_{s c}=\left\{\begin{array}{l}T_{s \mathrm{c}}+T_{\mathrm{w}} \text { if walking time to other line } \geq 1 \text { minute } \\ \mathrm{T}_{\mathrm{sc}} \\ \text { otherwise }\end{array}\right.$

- 3. Stop time at station

$\int \mathrm{T}_{\mathrm{sc}}+1$ minute to every station passed as stopping time, if more than 1 route can lead to any

- 4. Obtain the shortest route
$\mathrm{L}=\min \left\{\left(\mathrm{X}_{1}, X_{2}, \ldots, \mathrm{X}_{\mathrm{n}}\right) \mid \mathrm{X}_{1} \in \mathrm{~L}, \forall 1 \leq i \leq n\right\}$

5. To include the route into the tour
$X_{s c}=\left\{\begin{array}{l}1 \text { ifftravel time between node Sto } G \text { is } \\ \text { included }\end{array}\right.$
$\mathrm{X}_{\mathrm{sc}}=\left\{\begin{array}{l}1, \text { included in the route. }\end{array}\right.$
0 , otherwise.

APPLICATION OF RM APPROACH

Railway transport is one of the most commonly used ublic transportation in Malaysia with more than half a million daily users in year 2014. The number is expected to double when the new lines are ready in is expected to double when the new lines are ready in
the future (Brenda Ch'ng, 2014). Figure 3 shows the map of the Malaysia network used in the verification experiment and there are 104 stations connected in the RS network.
The Table 4 and Table 5 explain how the approach is applied to solve one of the cases in the verification experiment conducted.
SURVEY AND EXPERIMENT DATA ANALYSIS
In response to the 5 questions (Appendix A) which is related to the way one hundred respondents chose the optimum route based on their own assumption and experience, it is apparent that most of one hundred 6 presents number of respondents who managed to choose the optimum routes and Figure 7 summarize the overall results obtained related to route planning and optimization questions.
95 results generated by using the presented matched he exact solutions (Figure 8). The high percentage of matched results in the experiment shows that the solutions are efficient in solving the RTSP.
FINDINGS
Planning ahead journey to multiple destinations is essential especially to business practitioners and

PROCESS [8]:	itialization $\mathrm{j}=$
PROCESS [9]:	Check $\mathrm{j}=\mathrm{n}$ is true
PROCESS [10]: CHECK ANY G IS FOUND FROM BANDAR TASIK SELLATAN, NO G FOUND.	Process [10.A]: Check any G is found from the previous route? Yes, G2, Mid Valley is found on the previous route.
PROCESS [11.B]: Choose the previous route which has FOUND G.	Choose route which G2, Mid Valley is found. G is not found on any of the alternative routes.
PROCESS [17.B.1]:	Follows current solution, record time traveled, T2 $=1380$ seconds
PROCESS [17.B.2]:	Mid Valley, G2 is set as a new starting point, S3. Repetition (S3= Mid Valley)
PROCESS [3]: $1=1+1$	Number of G in the tour is 3 . Thus, $\mathrm{Z}=3$ $\mathrm{i}=1+1=2$ and it is less than $\mathrm{Z}=3$, this condition will return true
PROCESS [3.A.1]: CHECKING LINE OF	From the case given, starting point is Mid Valley and it is on the blue line which was identified as the KTM Seremban - Rawang line.
PROCESS [4]: CHECK STATION TYPE OF S3 WHETHER IS INTERCHANGE	The S3, Mid Valley station is not interchange
PROCESS [16]: IF IS NOT INTERCHANGE, THEN, CHECK WHether g Is FOUND IN SAME LINE	New starting point, , is Mid Valley which was identified as the KTM Seremban -Rawang line. Referring to the map, bees can move up or down the KTM Seremban - Rawang line, thus the number of possible route, n, is 2 . There are 2 new possible routes from Mid Valley, which are r 1 and r 2 . So, 2 bees are sent to these routes to find the desired destinations. Along $\mathrm{r} 1, \mathrm{G} 3=\mathrm{KL}$ Sentral is found and return true and move on to the next process. There is no G found in r 2 and there is no interchange down the route. Therefore, this route r 2 is abandoned.
PROCESS [16.A]: If G FOUND ON THE SAME LINE AS S THEN TIME, DENOTE AS T3	Travel time 300 seconds. T = 300 seconds.
PROCESS [17]: CHECK WHETHERIC FOUND Between g and s3	No IC found between S3,Mid Valley and G3, KL Sentral.
PROCESS [17.B.1]:	If IC is NOT found between G and S , then record travel time, T3
PROCESSS [17.8.2]:	Set new starting point as S4 New $=$ KL Sentral, Repetition (S4 = KL Sentral)
TABLE 04. Soving RISP in Experiment With RM Approach (cont)	

PROCESS [3] I $=1+1$	Number of G in the tour is 3 . Thus, $\mathrm{Z}, \mathrm{i}=2+1=3$ Since $\mathrm{i}=3$ and it is equal to 3 , this condition $(\mathrm{i}<\mathrm{Z})$ will return false. Thus, it will go to process [3.B].
PROCESS [3.B]: DISPLAY LIST t AND CALCULATE travel time	After all desired destinations are found, generate output in a list. The list will include the starting and end point.
REIURN TRIP:	All desired destinations are found. Identify optimum return route. Since the initial starting point and all the desired destinations are on the return trip follows the same route. Solution Obtained by Framework in Experiment 1 Case 1: Solution Routes $=$ Kajang \rightarrow Serdang \rightarrow Mid Valley \rightarrow KL Sentral \rightarrow Kajang Total time $=(\mathrm{T} 1+\mathrm{T} 2+\mathrm{T} 3)$ seconds + return trip $\begin{aligned} &(2280 \text { seconds }) \\ &=(600+1380+300) \text { seconds }+ \\ & \text { return trip }(2280 \text { seconds } \\ &= 4560 \text { seconds } \end{aligned}$ $=4560 \text { seconds }$

STARIING POINT	Starting point and end point, S: Jalan Templer (RD15). Desired destination (s), G: Petaling (RD16), Pasar Seni (KJ14), Salak Selatan (BL11) Start from RD15, it has 3 numbers of routes and placed in set $\mathrm{L}, \mathrm{L}=\mathrm{N}=3$
1)	First Constraint, number of routes is less than 6, thus using probability (a) - First probability P_1=n=3 - Choose all the routes
2)	Excluded third constraints, there is no more than 1 route can lead to G for each possible route.

3)	Fourth Constraint all the routes become possible routes and placed in set L^{\prime} $\cdot L^{\prime}=\min \left\{X_{1}, X_{2}, X_{3} \mid X_{1} \in L, \forall 1 \leq i \leq 3\right\}$, $\begin{aligned} & \mathrm{X}_{\mathrm{Z}}=\mathrm{T}_{\text {RD15,K14 }} \\ & \mathrm{X}_{2}=\mathrm{T}_{\text {RD15, BL1 }} \end{aligned}$ $\begin{aligned} & \bullet \mathrm{L}^{\prime}=\min \left\{\mathrm{T}_{\mathrm{RD} 15, \mathrm{RD16}}, \mathrm{~T}_{\text {RD15,K14 }}, \mathrm{T}_{\text {RD15,B111 }}\right\} \\ & =\min \{120,1206,1980 \\ & =120 \end{aligned}$ In the set L', the shortest travel time is 120 seconds and it will include in the total traveling time. Also, the 120 seconds will be assign inT RD15,RD16 - ChooseX X_{1}, and record travel time, $\mathrm{T}_{\text {RD15,RD16 }}=120$ because it is shortest travel time - Record station name, $\mathrm{L}^{\prime}=\mathrm{X}_{1}=\mathrm{T}_{\mathrm{B}}$
4)	$\begin{aligned} & \text { Fifth constraint, } \\ & \bullet \mathrm{S}_{\text {RD15,516 }}=1, \mathrm{~S}_{\text {BRD15, } 1414}=0, \mathrm{~S}_{\text {RD15,BL111 }}=0 \\ & \text { Repeat: } \\ & \text { Start from RDD } \\ & \text { the routes in set } \mathrm{L}, \mathrm{~L}=\mathrm{L}=\mathrm{N}=2 \text { possible routes, placed all }=\left\{\mathrm{X}_{1}, \mathrm{X}_{2}\right\} \end{aligned}$
1)	First Constraint, number of routes is less than 6, thus using probability (a) - First probability $\mathrm{P}_{2}=\mathrm{n}=2$ - Choose all the routes
2)	Excluded third constraints, there is no more than 1 route can lead to G for each possible route.
3)	Fourth Constraint all the routes become possible routes and placed in set L' - $\mathrm{L}^{\prime}=\min \left\{\mathrm{X}_{1}, \mathrm{X}_{2} \mid \mathrm{X}_{\mathrm{i}} \in \mathrm{L}, \forall 1 \leq \mathrm{i} \leq 2\right\}$ $\begin{aligned} & \mathrm{X}_{1}=\mathrm{T}_{\mathrm{RD16,K14}} \\ & \mathrm{X}_{2}=\mathrm{T}_{\mathrm{RD16} 16 \mathrm{BL11}} \end{aligned}$ - $\mathrm{L}^{\prime}=\min \left\{\mathrm{T}_{\mathrm{RD16} 16 \mathrm{~K}_{1}{ }^{\prime}} \mathrm{T}_{\text {RD16,BL11 }}\right\}$ $=\min \{1086,1860\}$ $=1086$ In the set L', the shortest travel time is 1086 seconds and it will include in the total traveling time. Also, the 1380 seconds will be assign in $\mathrm{T}_{\text {RD16,K14 }}$ ChooseX ${ }_{1}$, and record travel time, $\mathrm{T}_{\text {RD16, } \mathrm{K} 14}=1086$ because it is shortest travel time Record station name, $\mathrm{L}_{2}^{\prime}=\mathrm{X}_{1}=\mathrm{T}_{\mathrm{RD1} 16 \mathrm{~K} 14}$
4)	Fifth constraint, $\mathrm{S}_{\mathrm{RD} 16, \mathrm{~K} \mid 14}=1, \mathrm{~S}_{\mathrm{RD} 16, \mathrm{BL} 111}=0$ Repeat: Start from KJ14, it only has 1 possible route and placed all the routes in set $\mathrm{L}, \mathrm{L}=\mathrm{N}=1$
1)	First constraint, number of routes less than 6, thus using probability (a) - First probability $\mathrm{P}_{3}=\mathrm{n}=1$ - Choose all the routes
2)	Excluded third constraints, because there is only single route to reach BL14
3)	Fourth Constraint, all the routes become possible routes and placed in set L' $\begin{aligned} \cdot \mathrm{L}^{\prime} & =\left\{\mathrm{X}_{1}\right\} \\ \mathrm{X}_{1} & =\mathrm{T}_{\mathrm{K} 144, \mathrm{BL} 11} \end{aligned}$ $\text { - } \begin{aligned} L^{\prime} & =\min \left\{T_{\text {K114.BLL1 }}\right\} \\ & =\min \{1026\} \\ & =1026 \end{aligned}$

3) (CONT.)	In the set L^{\prime}, the shortest travel time is 1026 seconds and it will include in the total traveling time. Also, the 1026 seconds will be assign in $\mathrm{T}_{\mathrm{K} 14, \mathrm{BL11}}$, ChooseX ${ }_{1}$, and record travel time, $\mathrm{T}_{\mathrm{K} 14, \mathrm{~B} 5111}=1026$, because it is single route from $\mathrm{KJ} 14 \mathrm{~T}_{\mathrm{K} 14 \mathrm{~B}, \mathrm{BLI}} \mathrm{BL} 11$. Record station name, $\mathrm{L}_{3}^{\prime}=\mathrm{X}_{1}=\mathrm{T}_{\mathrm{K} 144 \mathrm{BL} 11}$
4)	Fifth constraint, $\mathrm{S}_{\mathrm{K} 144 \mathrm{BL} 111}=1$ Return trip: Start from BL11, no station transfer occurred and thus the return trip follows the same route.
1)	First constraint, number of routes less than 6 , thus using probability (a) - First probability $\mathrm{P}_{4}=\mathrm{n}=1$ - Choose all the routes
2)	Excluded third constraints, because there is only single route to reach RD15
3)	Fourth Constraint, all the routes become possible routes and placed in set L^{\prime} $\begin{aligned} & \cdot \mathrm{L}^{\prime}=\left\{\mathrm{X}_{1}\right\} \\ & \mathrm{X}_{1}=\mathrm{T}_{\text {BLIL,RD15 }} \end{aligned}$ $\begin{aligned} &- \mathrm{L}^{\prime}=\min \left\{\mathrm{T}_{\mathrm{BL11,R11}}\right\} \\ &= \min \{1980\} \\ &=1980 \end{aligned}$ In the set L^{\prime}, the shortest travel time is 1980 seconds and it will include in the total traveling time. Also, the 1980 seconds will be assign in $\mathrm{T}_{\text {BL11,RD15 }}$, Choose X_{1}, and record travel time, $\mathrm{T}_{\text {BL11,RD15 }}=1980$, because it is single route from BL11 to RD15. Record station name, $\mathrm{L}_{4}^{\prime}=\mathrm{X}_{1}=\mathrm{T}_{\text {BL11,RD15 }}$
4)	Fifth constraint, $S_{\text {bul, }, \text { pol }}=1$
Martematical MODEL:	$\underset{\mathrm{S}}{\mathrm{Z}}{ }_{\text {TRD15,RD16 }} \mathrm{S}_{\text {RD15,RD16 }}+\mathrm{T}_{\text {RD15,K14 }} \mathrm{S}_{\text {RD15,K114 }}+\mathrm{T}_{\text {RD15,BL11 }}$ $\mathrm{T}_{\mathrm{RD15,BL11}}+\mathrm{T}_{\text {RD16,K114 }} \mathrm{S}_{\text {RD16,K14 }}+\mathrm{T}_{\text {RD16,BL11 }} \mathrm{S}_{\text {RD16,BL11 }}+$ $\mathrm{T}_{\mathrm{K} 14, \mathrm{BL} 11} \mathrm{~S}_{\mathrm{K} 14, \mathrm{BL11}}+\mathrm{T}_{\mathrm{BL11,RD15}} \mathrm{~S}_{\mathrm{BLL1}, \mathrm{RD15}}$ $=(120)(1)+(1206)(0)+(1980)(0)+(1086)$ $(1)+(1860)(0)+(1026)(1)+(1980)(1)$ $=4212$ By using the mathematical model, the shortest traveling time of the route is 24 minute. According to mathematical model, the shortest route represent are $\mathrm{L}_{1}^{\prime} \rightarrow \mathrm{L}_{2}^{\prime} \rightarrow \mathrm{L}_{3}^{\prime} \rightarrow \mathrm{L}_{4}^{\prime}$, Where $\mathrm{L}_{\mathrm{k}}^{\prime}=\mathrm{T}_{\mathrm{Sg}}$ $\underset{\mathrm{RD15,RD16}}{ } \rightarrow \mathrm{~T}_{\mathrm{RD16,K14}} \rightarrow \mathrm{~T}_{\mathrm{K} 14, \mathrm{BL11}} \rightarrow \mathrm{~T}_{\mathrm{BL11,RD15}}$ \qquad $\mathrm{T}_{\text {lal }}$ Display station name: Jalan Templer-PetalingPasar Seni-Salak Selatan-Jalan Templer

tourists around the world. Such Planning can be an exhausting ordeal but unplanned journey could lead to longer total travel time and directly increase a proper planner or tool, the process of determining the optimal route will never be easy and might not even serve the purpose. The results showed the approach was capable of generating results similar to exact solution as presented in Figure 8. This proved that the approach used to solve RTSP could generate highly reliable results in cases with different complexity. The finding
has significant implications for the understanding of how swarm intelligence

Best route chosen

can be used to solve complex problems and serve as a base for future studies in complex routing and optimization problems. However, these findings could affect the reliability of the solutions. The experiment was successful as it managed to demonstrate that the effectiveness of the model in solving the routing problem discussed. Further studies, which take these variables into account, can be undertaken to enhance the algorithm so it can be applied in different RS network without much modification. The solutions generated will be more reliable if real time data can be obtained by leveraging big data and Internet of Things (IoT)

FUTURE USE OF IOT IN RM

The solution presented were converted to a program and operated as intelligent system to monitor and control the railway system traffic with the use of foT. The solution has been tested by using smart devices (Raspberry Pi) to capture live data in the stations before sending to local processing module. Google Vision cloud service was used to capture data required such as when the trains arrive, how long was the stop time and traffic of the station by using deep learning method to improve the output generated. Raspberry Pi worked as mini computer that processed the data locally by performing classification
of data obtained before sending to the cloud server via the Internet. Once the of data obtained before sending to the cloud server via the interne.. Once the
cloud server received the data, the values were assigned to the program with algorithm derived from the presented framework for route analysis purposes. The MM with IoT can be presented as in Equation 2 subject to capacity of the train. This constraint directly enhanced processes labeled [4] and [10] in the framework. It ensured recommendation to transfer will not increase the overall traveling time and reduce the quality of the tou
$\mathrm{Z}=\sum_{\mathrm{s}=1}^{\mathrm{m}} \sum_{\mathrm{G}=1}^{\mathrm{m}} \mathrm{T}_{\mathrm{sc}} \mathrm{X}_{\mathrm{sc}}+N T W Z T$, where $\mathrm{S} \neq \mathrm{G}(2)$ NTWT $=$ Waiting time for the next available train
Tensorflow library was used to process and convert the data to valuable in formation (recommended solutions to the stakeholders) before storing in high-level diagram of the solution with the use of IoT to improve the reliability and quality of the results with real time data.

CONCLUSION

The paper presented a novel RM approach that can be beneficial to business practitioners in enhancing the supply chain and RS transportation users who ravel in a complex network with hundreds of stations and interchanges. Besides of serving as a future reference on the subject of SI in transportation planning and scheduling, the potential of using bee intelligence in solving complex approximation and routing problems was uncovered. The research demonstrated that bee concept works effectively in RS route planning and other related optimization problems. This research also strengthened the idea that approach is highly customizable and reliable comparing to the exact methods that require higher computational time and resources. Mostimportantly, the findings help to uncover critical areas in the RS route optimization that many researchers have not explored and provide opportunity to advance the understanding how swarm intelligence such as bees can be used in route
planning and optimization.

Gateway
Interne Internet

Cloud Processing

- AUTHORS -

 Malaysia. Hismaior area of interest include svarm inteligence, logistis sand dransportation optuiiseations, project management search engine optimisation, decision and management science. He isa Ph.D
Management candidate at Ittennational University of Malaya and Wales,

- REFERENCES
 algorithms Computers \& Operations Reseaa
h htp://doi.org/ $10.10161 /$;cor2014.01.011
Aghazaden, F, \& Meybodi, M. R. (2011). Learning Bees Algo.
rithm For opimizization 2011 International Conference rithm For optimain.
formation and Inteligent Computing, 18, 115-122. An. (2016). Xinua Insight China-Europe railway to dive
crosssborder e-commerce- Xinhual Engishinews.c. Retrieved

 pal freienh reguations. Applied Mathematical Modeling, 40(1),

 and Computation, 195(2), 775-785. http:///doiorg/10.1016//
amc.2007.05.023
 ment Problem. Svarm Intetijence:Focus on Ant and Particle
 Inteligence. Handbook of Bi-Inspired
tions, Chapman $\&$ Hall / $/$ RC,, $755-62$.
 al optimization Natural Computing 8 8(2), 239-287. http://dol

 Brenda Ch'ng. (2014). Building of new MRT second line to begin next November The Starar Retrieved from hth://wwu.
thestarcom.my news community $2014 / 12 / 103$ bid ding-a

 Danesh, Z. (n...). Modedos y métodos de le a distribución de mer-
 Devaki, P, Prabhakar, P. M., \& Kumar, S. M. (2019). Easy.
Searching of Train Details by Railway Route Optimization Sys-

bees colony algorithm for traveling salesman problem. Joumal of
Advanced Computing and Communicaion Technologies (2), $2-4$ Nikolić, $\mathrm{M}, \&$ \& Teodorovicí, \mathbf{D}. (2013). Transit network design
by bee colony optimization Expert Systems with Applicaions.
 Vol. Vol. 8).
Pop, P. C., Pintea, C. M, \& Sitar, C. P. (2007). An ant-based heu
ristic for the rail istic for the railuay traveling salesman problem. In Worrshops
no A pplications of Evolutionary computaton, $702-711$.

 Stevens, G, \& \& Johnson, M. (2016). Interating the Supply
Chain... 25 years on International Journal of fhysical DistribuChain.. 25 years on. Internat
tion α Logisticis Management Teododoricic, D. (2009). Bee Colony Optimization (BCO). Opti-
inization Teodorovic, D., \& Dell Orco, M. (2005). Bee Colony Optimition Problems Advanced OR and AI Methods in Trans tation
 Teodorovic, D. \& Nikolic, M. ((2013). Expert Systems with
Applications Transit newwork design by Bee Colony Optieswa.2013.05.002
 urral of operations Research, $25(1), 185-218$. http://doi.
rg/10.2298 $/$ IoR13110202020
 portation Studies, $5,16,16$
CBO9781107415324.004 Vromans, м. (2005). Reliability of Railway Systems. Yang, X.-.S. (2014). Nature-inspired optimization algorithms

 Lambiase. A. (2013). Honey. bees isspired optimization meth-
od the Bees Algorithm.nsects, 646 - 6 .

Have you not received your issue of Journal of Modern Project Management yet?

To subscribe, send your full name and preferred mailing address (online option included) to subscriptions@journalmodernpm.com

