
IN THE SOFTWARE PROJECT COST
CONTROL MODELS

TOWARDS
INCORPORATING MULT IMED IA UNIVERS I TY - MALAYS IA

Abstract: Controlling software cost is crucial to complete projects within the

planned budgets. Unfortunately, the existing software cost control models;

especially the earned value management system (EVM) experience some

limitations. These models, mainly focus on factors such as time and cost while

ignoring the related human factors. Since software is delivered by people and

affected by their competencies, it is expected that their associated attributes

would be quantified and incorporated in such models. Although many papers

discussed the human factor issues, however, very few suggested quantified

indices to model such factors. This paper aims at introducing the Developer

Competency Index (DCI) and Team Competency Index (TCI) as a quantification of

the human skills needed by the software engineers. Function Point Analysis

(FPA) is extensively used in the calculation process. Moreover, using data drawn

from five actual projects, the study shows how these indices are related to the

cost of software reworks and how they can be used to monitor and control the

team performance throughout the project lifecycle.

PAGE 55

JOURNALMODERNPM.COM

TAR IG A KHAL ID , PHD .

ENG -TH IAM YEOH , PHD .

SEPTEMBER/DECEMBER 2018

KEYWORDS : HUMAN FACTORS , SOFTWARE

COMPETENCY , SOFTWARE COST CONTROL ,

EARNED VALUE MANAGEMENT , EVM

COST MODELS

DOI NUMBER: 10.19255/JMPM01704

HUMAN FACTORS

PAGE 57

JOURNALMODERNPM.COM SEPTEMBER/DECEMBER 2018

The increasing demands in the various types of

software applications have led to the initiation of a

huge number of software development projects. In

concurrence with these demands, software costs are

increasingly large (Boehm, 1981). Unfortunately, a

considerable percentage of the software projects

experience cost overruns. The Standish Group

reported that the success rate of software

development has just increased from 16% to 32%

during the period from 1994 to 2013 (Chaos

Manifesto, 2013). Yet, the cost overrun is still on the

increase. A joint-research conducted by McKinsey

and Oxford reported that the large software projects,

with budgets exceeding 15 million USD, were

severely challenged due to 66% of cost overrun

(Bloch, 2012; Chandrasekaran, 2014). These amounts

of cost-overrun indicate that developing software

systems is both expensive and difficult. This is due to

a series of problems such as poor or volatile

requirements, poor project management, low skilled

developers, and cost and schedule overruns (Boehm,

1981; Bennatan, 2000). Reworks make managing

software projects severely challenging. In fact, 40%

to 50% of the development efforts spent in reworks

and maintenance that may approach 70% of the

total lifecycle cost (Boehm and Basili, 2001; Efe and

Demiros, 2013). In comparison with the other IT

projects, software projects incur the highest risk

(Bloch, 2012).

To address the problem of cost overrun, software

project managers use various project management

tools and techniques. The most recognized cost

control technique provided by the project

management best practices is the Earned Value

Management (EVM). It is “the only one of many

measures” which is extensively used to assess the

status of a software development project (NAVAIR,

2004). The EVM controls project performance by

tracking the schedule and cost via two indicators;

the Schedule Performance Index (SPI) and Cost

Performance Index (CPI) (PMI, 2017).

These indicators are calculated at many checkpoints during

the project lifecycle. If CPI is found below 1 this indicates a

problem of cost overrun while the project is considered

cost-healthy if CPI is equal to or greater than 1. Also, SPI<1

indicates project delays, SPI=1 indicates that the project is

expected to finish as planned, and SPI>1 means that the

project will finish earlier than planned. Moreover, the EVM

has a forecasting scheme for the overall cost at the end of

the project. It calculates the estimate at complete (EAC) in

terms of the CPI and SPI (PMI, 2017) (see Appendix A for

more details). Unfortunately, the EVM model has some

limitations in controlling software projects, especially the

inaccuracy in forecasting the overall cost at the project

completion. The SPI and CPI may positively evaluate the

schedule and cost efficiencies while they have nothing to

report about the quality of the software product itself. EMV

measurements are based on neither product metrics nor

product quality (Solomon, 2005). EVM has no quality

indicator as it only measures time and cost and accepts the

deliverables upon their completion (Ghosh, 2015). It

measures the quantity, not the quality (Solomon, 2005).

 One of the major issues related to the EVM is that it cannot

estimate the cost of software reworks that occur after

testing (Efe and Demiros, 2013). However, unless the existing

project management tools and techniques have been

modified, the special needs of the software projects will

continue unsatisfied (Efe and Demiros, 2013).

On the other hand, software is developed by people, not

machines. Software development is a human-centric

activity and highly influenced by the psychology, emotions,

and personality variables of the developers, which play a

determining factor in their work styles (Shneiderman, 1980;

AlQaisi et al., 2013; AlQaisi et al., 2016; AlQaisi et al., 2017). The

quality of the software product is affected by developers’

personal attributes such as their level of knowledge, skills,

cultural differences, and diverse attitudes (Mishra and

Mishra, 2011) (Colomo-Palacios et al., 2013; Colomo-Palacios

et al., 2014). In fact, the major issues in software

development are human-related rather than technical ones

and the major software system failures are attributed to

human issues (Waychal and Capretz, 2017;

1. Foreword

TOWARDS INCORPORAT ING HUMAN FACTORS IN THE SOFTWARE

PROJECT COST CONTROL MODELS

DeMarco and Lister, 2013). According to a survey

conducted by Yilmaz et el. (2017), a significant

number of software projects failed due to social

issues. Despite the huge impact of the human

factors on the software development process, they

are always overlooked and not well-studied in

comparison with the technical factors (Waychal and

Capretz, 2017; DeMarco and Lister, 2013).

 Unfortunately, the existing cost control tools such as

the EVM do not incorporate such human factors into

their models.

The objective of this research is to answer the

following research questions:

 RQ1: Can we establish a unified software

development competency framework?

 RQ2: Can we construct quantified competency

indices for the individual developers and the whole

team?

 RQ3: Can we incorporate these indices into the

software cost control tools such as the EVM?

 RQ4: Can we monitor and control these indices as

we used to do with the schedule and cost?

By answering these questions, the study introduces

human related indices to a software project cost

control model; namely the Developer Competency

Index (DCI) and Team Competency Index (TCI). These

indices would be incorporated into the EVM model

to enhance its ability in both assessing the project

performance and forecasting software cost at

project completion. The applicability of the TCI is

tested by making use of a sample dataset collected

from 5 actual projects. The possibility of using the

TCI along with the other cost control variables is

discussed.

The rest of the paper is organized as follows; Section

2 covers the literature review. Section 3 describes the

research methodology while section 4 provides a

detailed description of the proposed framework and

the quantified model. The fifth section shows the

evaluation of the proposed model. Section 6 covers

the research discussions. Conclusions and future

work are discussed in Section 7.

Software project cost is affected by many technical and

non-technical factors. However, for decades, researchers

have focused on the study of the technical factors. Technical

factors such as the lack of quality performance indicators,

the emergence of the agile development methodology,

uncertainty in performance measurements, requirements

volatility, and uncertainty associated with the project risks

have been extensively investigated. These researches

resulted in various extensions to the EVM such as the quality

EVM, agile EVM, fuzzy EVM, and performance-based EVM (Ju

and Xu, 2017; Khalid and Yeoh, 2015; de Souza et al., 2014;

Naeni et al., 2014; Xu et al., 2010; Solomon, 2005). Although

these researches have created a rich body of knowledge,

they did not well-cover the non-technical factors that may

affect the effectiveness of the software cost control tools.

2. Literature review

2.1 Human issues in the software development process

Recently, researchers started to focus on the impact of the

human factors, such as the impact of the developers’ work

habits and personality traits on the productivity patterns

(Meyer et al., 2017a). In this context, Meyer et al. (2017b)

identified six groups of developers, according to their

perceptions of productivity. These groups are based on the

personal attributes of the developers, namely; social, lone,

focused, balanced, leading, and goal-oriented developers.

They argued that taking this grouping into account during

planning and team building will increase the developers’

productivity. Moreover, measuring the individual attributes

of the developers and grouping them according to their

types of personality will positively impact the software

development teams (Anderson et al., 2018). Building the

teams based on the human aspects as well as monitoring

the team climate can promote the developers’ satisfaction

and improve the product quality (Acuña et al., 2015). In

general, the contemporary software development

methodologies, especially the agile ones paid more

attention to the human factors (Broza, 2012; AlQaisi, 2017;

Schwaber and Sutherland, 2017). However, while many

researchers studied the importance of the human factors

and their impacts on the developers’ productivity and the

product quality, unfortunately, a very limited number of

PAGE 59

JOURNALMODERNPM.COM SEPTEMBER/DECEMBER 2018

studies seem to provide human-related frameworks

or quantified indices.

Among these few studies, we found that Sedelmaier

and Landes (2014) established a framework named

as the Software Engineering Body of Skills (SWEBOS)

defining the soft skills needed by the software

engineers. The SWEBOS suggested six main areas,

namely; collaboration, communication, structure,

personal competencies, consciousness of problems,

and the competence to solve problems. The

collaboration area covers the skills needed to

collaborate with other developers to handle

problems. The communication area describes the

skills needed to collaborate with other developers to

handle problems while the structure covers the skills

needed to collaborate with other developers to

handle problems in relation to the assigned tasks.

The personal competencies show how to handle

challenges in a goal-oriented manner. The

consciousness of problems covers the capability of

the software developer to comprehend complex

processes and systems, and their mutual

relationships. The competence to solve problems

describes how software developers are capable to

apply their knowledge and skills to solve problems.

However, the SWEBOS did not suggest a model to

quantify the listed skills. Also, it did not include the

related hard skills as it only focused on the soft skills.

However, the hard skills are well-covered by the

third version of the Software Engineering Body of

Knowledge (SWEBOK), which suggested 15

knowledge areas relevant to the discipline of

software engineering (Bourque and Fairley (eds.),

2014). Among these knowledge areas, five areas are

considered as core. These are software requirements,

software design, software construction, software

testing, and software maintenance.

On the other hand, Colomo-Palacios et al. (2013)

suggested a framework to evaluate the

competencies of the software developers. It consists

of generic and technical competencies. They

extracted the generic competencies from the

Spanish white book for university degrees in computer

science (Casanovas et al., 2004).

These generic competencies included, but not limited to,

creativity, leadership, interpersonal skills, and critical

thinking. On the other hand, the technical skills are

extracted from the SWEBOK including the five core

processes in addition to the software quality, configuration

management, software engineering management, software

engineering process, and software tools and methods.

Moreover, they provided a scale to evaluate each

competence. This scale is described as low, medium, high

and very high. Accordingly, they suggested that the

evaluation of each developer should be done by the

supervisors, peers, and subordinates. The result will be the

average of these evaluations. The contribution of this

research is the establishing of a unified competency

framework quantifying the individual competences of the

developers. However, it didn’t integrate the individual

competences into a unified index describing the whole

competences of the individual developers. Moreover, the

suggested framework is well-structured into categories

containing the related competencies. Instead, it provides a

long list of individual competences, which makes it difficult

to monitor and assess these competencies at a higher level.

TOWARDS INCORPORAT ING HUMAN FACTORS IN THE SOFTWARE

PROJECT COST CONTROL MODELS

The HV is calculated in terms of the actual cost (AC)

as the measurement of the labor ability in

comparison with his/her actual costs. HV can be less

than, greater than, or equal to 1. Then, HEV is given

by multiplying HV and EV. However, the process of

assigning a value to HV is not well-described in the

study. Moreover, the study did not suggest human

factors upon which the value of HV would be

defined. In fact, the suggested model expressed the

human resource (HR) related indices in terms of the

traditional cost and schedule indices.

As a conclusion, our literature review indicates a

huge knowledge gap in quantifying human factors

as well as incorporating these factors in the software

cost control tools, especially the EVM. Yet, the

software engineering literature has only limited

publications researching into the importance of the

human-side of the software development (AlQaisi,

2017; DeMarco and Lister, 2013; Broza et al., 2012).

development tools used. Moreover, it enables calculating

the software size from the given list of requirements.

 4. Accordingly, we calculate the share of each developer by

dividing the size developed by him/her by the total size of

the software. This value is called the impact factor (IF) of the

developer.

 5. Finally, we calculate the overall TCI by summing up the

multiplications of the DCI and IF for all developers.

STEP 3 – Model evaluation: The model is to be evaluated as

follows:

 1. We collected data from real projects. These data consist

of the developers’ competency data, project cost

performance data, and the FPA data, which present the

software size developed and the share of each developer.

 2. For each project, we calculated the TCI and the variables

related to the cost performance information.

 3. We tested the correlation between the TCI and each of

the cost variables. A strong correlation of the TCI with at

least one of the cost related variables may indicate the

possibility of incorporating the TCI into the EVM model.

 4. We illustrate the possibility of monitoring and

controlling the TCI during the lifecycle of the projects.

The research steps and its relation to answering the research

questions are shown in Figure 1. The detailed descriptions of

the three steps are shown in the two subsequent sections.

2.2 Human issues in the EVM model

With respect to the EVM enhancements, Vargas (2004)

suggested the use of the EVM to model the performance of

the members of the project team. This is achieved through

an introduction of a new index called Human

.Pracharasniyom et al. (2015) suggested an extended EVM

model. The suggested model calculates the planned and

actual values of the work performed by a project member.

Accordingly, they suggested a human resource performance

index (HRPI) indicating whether the project member can

perform the assigned tasks as planned or not. Performance

Index (HPI). The main shortcoming is that the HPI is

expressed in terms of the main indices of the traditional

EVM without incorporating real human factors into the

model. The basic parameters of the model are the Human

Value (HV), the Earned Value (EV) as defined by the

traditional model, and the Human Earned Value (HEV).

3. Methodology

To answer the research questions, we follow the

subsequent steps:

STEP1- Building a unified competency framework:

This framework consists of the technical and

nontechnical skills as needed by the software

developers. This is achieved through literature

review and synthesis, which results in modifying and

integrating the SWEBOK and SWEBOS.

STEP2 – Developing a quantified competency

model: We develop this model by constructing the

DCI and TCI indices as follows:

 1. We assign relative weights to each element in the

competency framework.

 2. Then, we develop an equation to calculate the

DCI for each developer, according to the assigned

values of the framework elements.

 3. We calculate the size of the software coded by

each developer. This is done using the function point

analysis (FPA) method. The size is calculated in

function points (FPs). We adopt the FPA since it

provides measurements independent of the

FIGURE 1: Research logical flow

4. Proposed framework and model

4.1 Software development competency framework

(SDCF)

PAGE 61

JOURNALMODERNPM.COM SEPTEMBER/DECEMBER 2018

We suggest the SDCF as a framework, including the technical and non-technical skills need by the software

developers. The SDCF is nothing but a customized combination of the SWEBOK and SWEBOS. The technical

skills are extracted from the SWEBOK while the non-technical skills are extracted with modifications from the

SWEBOS.

The technical skills include the SWEBOK core knowledge areas, except the software maintenance as it usually

happens during operations i.e. after the project completion. Each knowledge area constitutes a competency.

Moreover, we add two new competencies. The first one is about the big picture of the software development

lifecycle, namely; the capability of selecting and adapting the appropriate software development methodology.

The second one, is called the system knowledge, which covers the hard skills other than the software

development, but still needed by the developers to accomplish their software development tasks. These

include knowledge related to the operating systems, database management systems (DMBS), and information

security. In general, each competency covers a set of criteria as illustrated in Table 1.

TOWARDS INCORPORAT ING HUMAN FACTORS IN THE SOFTWARE

PROJECT COST CONTROL MODELS

On the other hand, the nontechnical skills include

the SWEBOS skills with some modifications. The

communications and personal competencies are

combined into one category called communication

skills. Moreover, we combine the “consciousness of

the problem” and the “competence to solve

problems” into one category named problem-

solving. The details are illustrated in Table 2. In Table

1 and Table 2, the competencies and their associated

criteria are identified with unique IDs to ease

referencing and traceability.

TABLE 2: SDCF nontechnical competencies
TABLE 1: SDCF technical competencies

In our literature review, we didn’t find an index quantifying the

developer’s competency. This study suggests the DCI as an index

quantifying the whole elements of the SCDF. The SDCF consists of

10 competencies from C1 to C10. Moreover, we suggest a relative

weight for each competency such that competency Ci has a

specific weight Wi according to its importance within the project

context. The scale of Wi is as follows:

Wi = {very low, low, average, high, very high} (1)

Where very low =1, low = 2, average = 3, high = 4, and very high = 5.

4.2 Developer competency index (DCI)

PAGE 63

JOURNALMODERNPM.COM SEPTEMBER/DECEMBER 2018

Moreover, each criterion within a competency, has a relative

weight from 1 to 5, according to the following ratings; very

low, low, average, high, and very high respectively.

Since the maximum rate for each criterion, in category Ci, is

5, then the maximum rating Maxi is equal to 5 multiplied by

j, where j is the number of criteria within Ci.

Finally, the developer competency index for the individual

developer (DCI) is given by:

TOWARDS INCORPORAT ING HUMAN FACTORS IN THE SOFTWARE

PROJECT COST CONTROL MODELS

 1. The competencies of the software developers as

described by the SDCF.

 2. The planned and actual development costs for

the whole project.

 3. The software rework data, which consists of:

 a. Number of developers worked in each round of

software reworks

 b. Working days spent in each round of software

reworks

 4. Report status at the defined checkpoints, which

consists of:

 a. The size of the developed software and the

contribution of each developer, calculated in

function points.

 b. The planned and actual cost for the software

developed

 c. The planned and actual schedule for the

software developer.

TABLE 3: Data collection attempts

In fact, we face many challenges in collecting the data due to the

following reasons:

 1. The public data repositories and the commercial datasets,

concerned with software engineering and project management,

do not include the required data.

 2. Software firms are reluctant to share their cost-related data.

This type of data is mostly classified as confidential.

 3. The software firms that agreed to share their data do not

adopt the FPA as part of their software development

methodologies.

 4. Some of the competencies of the SDCF are not found in the

performance appraisal procedures as defined by the software

firms.

 5. Parts of the project data are missing due to poor project

tracking and poor documentation.

To fill these the gaps, we took the following actions:

 1. We had 8 interviews with the project managers and team

leaders to capture the missing data, especially the technical

details related to the assessment of the developed software at

each checkpoint.

 2. We reviewed some minutes of meetings to extract missing

milestone dates.

 3. In some projects, defect removal activities are not well-

documented. We extracted the required data by searching the

correspondences among the developers, project managers and

testing teams.

 4. We submitted the team competency forms, shown in Table 1

and Table 2, to be filled by the project managers, team leaders,

and human resource personnel. Moreover, we facilitated

workshops to assist them to fill the forms in a collective manner.

On the other hand, to conduct the FPA, we took the following

actions:

DCI = (2)

The scale used in quantifying the elements of the SDCF is

similar to the one suggested by Colomo-Palacios et al. (2013)

with a simple modification of adding the scale “very low”.

To calculate the DCI for a specific developer, each element

should be assigned a value on the scale of 1 to 5. We suggest

that these values are filled by the project managers, team

leaders, and human resource personnel in the software firm.

Their collective judgement is expected to minimize the bias

incurred by the individual judgement. Alternatively, the

values may be filled by the individuals in an independent

manner and the average will be calculated as suggested by

Colomo-Palacios et al. (2013).

5. Model evaluation

We suggest a new index called TCI to represent the

competency of the whole team. It resembles the centroid of

the individual team members. The value of the TCI depends

on two factors; the first one is the DCI of each developer

while the second one is the percent software size developed

by each developer. This percentage represents the impact

or the contribution of the individual developer to the

project. We suggest a variable called the Impact Factor (IF)

to represent the developer’s contribution.

To calculate IF, we suggest the use of the Function Point

Analysis (FPA) in calculating the software size. We use the

FPA as described by IFPUG (2010). A brief description of the

FPA is found in Appendix B.

The impact factor of Developeri is given by:

Where FPi is the size of the software developed by

Developeri and FPtotal is the total size of the software

developed by the whole team. Given that the sum of the

impact factors for the whole team is equal to 1, TCI is given

by:

Where DCIi is the competency index of Developer(i), IFi is

his/her impact factor, and N is the number of developers.

(3)

(4)

IFi =

TCI

4.2 Developer competency index (DCI)

5.1 Overview

The objective of this section is to test the possibility of

incorporating the TCI into the software cost control tools,

especially the EVM. This will be performed by testing

whether the TCI correlates with one of the project cost

variables. The evaluation process consists of the following

activities.

 1. Calculating the DCI of each developer as in Equation 1.

 2. Calculating the TCI of the whole team as in Equation 2.

 3. Calculating the planned and actual software

development costs.

 4. Calculate the cost of software reworks associated with

defect removal as a result of the software tests.

 5. Calculating the correlation coefficients between the TCI

and the project cost variables.

 6. Assessing whether the results show a strong correlation

or not.

 7. Assessing whether the TCI can be monitored and

controlled during the project lifecycle.

The testing experiment is to be executed using multiple

datasets. Each dataset represents a project containing the

following data:

5.2 Data collection

We attempt to collect data from many sources,

including the public data repositories, commercial

datasets, relevant research groups, individual

scholars, software firms, open source software

communities, and relevant social media websites

such as Research Gate. The data collection efforts

have covered organizations and individuals

scattered in 11 countries. Only three software firms

agreed to share their data. The first firm agreed to

share the project data of three financial applications,

the second one shared the data of its healthcare

application, and the third one shared its

administrative application. However, the data

collection attempts are shown in Table 3.

PAGE 65

JOURNALMODERNPM.COM SEPTEMBER/DECEMBER 2018

 1. We reviewed the requirement documentations, software

architectures, screens, and database schemas. This is to

assess the size and complexity of the software.

 2. We conducted 5 FPA workshops accompanied with

presentations and 3 focus groups to convert the raw data to

the variables used by the TCI model.

TOWARDS INCORPORAT ING HUMAN FACTORS IN THE SOFTWARE

PROJECT COST CONTROL MODELS

 TABLE 8: TCIs correlation results

To illustrate how the team performance could be monitored,

Figure 2 shows the TCI of the five projects versus the percent

complete (%C). The value of %C is calculated by dividing the

software size developed at a specific time by the total planned

size of the software. The data associated with the diagram

represent the measured data at each checkpoint during the

project’s lifecycle. Table C.3 in Appendix C shows these data.

5.4 Correlation test

We tested the correlation of the TCI with the

corresponding values of the planned, actual, rework

costs, and the percent rework cost, yielding the

results shown in Table 8.

5.3 Data processing

To calculate the DCIs and TCIs for the whole collected data,

we established a well-defined set of procedures as shown in

Table 4.

Table 5 shows the software sizes, the contributions of the

individual developers, planned and actual costs, and the

costs associated with reworks and defects removal.

Moreover, we assessed the developers by assigning values to

each criterion. We applied Equation 2 to calculate the

individual DCIs. Then, we used Equations 2 and 3 to

calculate the TCI for each project as shown in Table 6. We

assumed equal weights for all competencies. Table C.2 in

Appendix C shows the DCI calculations in detail.

We have also calculated the percent cost of rework (%R)

using Equation 5. The results for each project is shown in

Table 7.

TABLE 4: Data processing procedure

TABLE 5: Projects’ aggregate data

TABLE 6: DCIs and TCIs values

(5)

Where CoR and CoD are the cost of rework and cost of

development respectively.

TABLE 7: %R per project

A correlation factor of ±0.8 or more indicates a

strong correlation, ±0.5 indicates moderate

correlation, while ±0.2 or less indicates weak or no

correlation (Zou et al., 2003). The results in Table 8

show no correlation between the TCI and both the

planned and actual development costs as the

correlation factors, in both cases, are less than 0.2.

Moreover, there is a moderate correlation between

the TCI and the rework cost. On the other hand,

there is somehow a strong negative correlation of

-0.79 between the TCI and the %R. This correlation

can be interpreted as follows: a team with low TCI is

expected to deliver a poor-quality product with a

high percentage of the cost of rework while a team

with high TCI is expected to deliver a good quality

product with a low percentage of the cost of rework.

5.5 TCI monitoring and controlling

FIGURE 2. TCI vs. %Complete

In general, to maximize the TCI, the developers with the highest

DCIs should have the highest workloads i.e. the highest IFs. On

the other hand, developers who have the lowest DCIs should

have the lowest IFs. Clearly, this should be governed by the

project constraints such as time and cost.

The following hypothetical example illustrates the use of the

TCI to monitor and control the team performance in a project.

 Example

Suppose that there is a team consists of two developers with

DCIs of 0.9 and 0.7.

PAGE 67

JOURNALMODERNPM.COM SEPTEMBER/DECEMBER 2018

It is planned that the first developer has a share of 40% of

the total assignment while the second one has 60%.

Hence, DCI1 = 0.9, DCI2 = 0.7, IF1 = 0.4, and IF2 = 0.6

TCI = 0.9 x 0.4 + 0.7 x 0.6 = 0.78

If the value of TCI is not accepted to the project

management team and there is a need to increase the TCI.

This increase could be achieved by three scenarios:

The first one is to replace the second developer by a one

with a higher DCI (0.85 for example) while keeping the same

impact factors. Hence, TCI = 0.9 x 0.4 + 0.85 x 0.6 = 0.87

The second scenario is to increase the impact factors of the

developers whose DCIs are high. In this case, the workloads

could be adjusted to increase the share of the first developer

(to 0.6 for example). The IF of the second developer would

be reduced to 0.4. Hence, TCI = 0.9 x 0.6 + 0.7 x 0.4 = 0.82

The third scenario implies changing the DCI and the IF. For

example, the second developer is replaced (as in the first

scenario) and the IFs are adjusted (as in the second

scenario), yielding: TCI = 0.9 x 0.6 + 0.85 x 0.4 = 0.88

Therefore, the overall TCI can be modified by reconfiguring

the values of the DCIs or/and IFs.

TOWARDS INCORPORAT ING HUMAN FACTORS IN THE SOFTWARE

PROJECT COST CONTROL MODELS

We did not test projects with large sizes greater than 1000

function points. The large-size projects may consist of different

interacting teams and may have more complex factors that are

not investigated by this study.

We did not test projects with a large size of team members

such as 10 or 20 developers.

The TCI values in the sample ranged from 0.72 to 0.82.

Therefore, wide ranges of values below 0.7 or exceeding 0.82

are not tested.

We did not test projects adopting methodologies other than

the waterfall projects.

This study establishes a unified framework for software

development competency; namely the SDCF. The SDCF

covers the technical and nontechnical competencies in a

well-structured manner (Answer to RQ1). Providing a scale

for rating the individual competencies enables the

construction of a model quantifying the competency of the

individual developers and the team containing them;

namely the DCI and TCI (Answer to RQ2). Moreover, the

model evaluation shows a strong correlation between the

TCI and the cost of software rework expressed as

a percentage of the total cost. This finding indicates the

possibility of incorporating the TCI into the software cost

control models by enabling these models to forecast the

software reworks and to monitor and control the

performance of the individual developers and their teams

(Answers to RQ3 and RQ4). In general, this study has

scientific and practical implications as will be discussed in

the subsequent subsections.

Our literature review has indicated a huge knowledge gap in

studies quantifying human factors in software projects. This

supports the arguments of Mishra and Mishra (2011) and

Lenberg et al. (2015) that most of the research and practice

has focused on the technical factors without satisfying the

needs for more studies related nontechnical issues. The

available studies have only “scratched the surface of their

impacts” on the software development projects (Capretz et

al., 2017). In the light of the gap in this kind of studies, we

believe that this research forms a strong contribution. It

establishes a new framework, which extends and integrate

the SWEBOS and SWEBOK. It also provides a quantified

model extending the framework developed by Colomo-

Palacios et al. (2013). Moreover, this study opens new

avenues for researching the human side of the software

development in a quantitative manner. In fact, there is a

need for more empirical studies in the human-related issues

(Mishra and Mishra, 2011). On the other hand, this research

brings the attention to the relationship between the TCI and

the cost of the software reworks and show the possibility of

future researches to develop a software cost control model

incorporating the human factors.

6.1 Results

6.4.1 Internal validity

In this study, the TCI calculation is an average of the

DCIs of the individual developers. Nevertheless,

teams are not a simple collection of individuals. The

current TCI does not reflect the performance of the

team in terms of collective attributes such as

homogeneity, level of diversity, coherence, synergy,

and trust. Moreover, the maximum number of

individuals in the sample teams does not exceed

four persons. Therefore, the impacts of the team size

on the collective attributes, team performance, and

the individual performance are not investigated.

The collected data did not include agile projects.

Agile methodologies, such as Scrum, have more

focus on the human side. Values such as

commitment, courage, focus, openness and respect

are embodied and practiced by the Scrum team

members (Schwaber and Sutherland, 2017). These

values may affect the individual and collective

attributes of the developers. The absence of

investigating all these factors may impose threats to

the internal validity of this study.

6. Results and Discussion

6.2 Scientific implications

6.3 Practical implications

We believe that this study can assist the software firms,

project managers, and software team leaders in many

aspects. The SDCF can be used to adjust the performance

appraisal so that the competencies measured could be in

harmony with these used in the software development

projects. Moreover, it encourages the software project

managers to consider the human factors while managing

projects. Project managers and team leaders may use the

DCI and TCI in planning, monitoring, and controlling the

performance of the development team. They may also make

use of the relationship between the TCI and the cost of

rework to minimize the total cost of development.

6.4 Threats to validity

The threats to the validity of this research consist of threats

to internal validity, construct validity, and external validity.

 Our discussion in this section will follow the guidelines

suggested by Kitchenham et al. (2002).

6.4.2 Construct validity

The software development experience influences

function point estimates (Ho-Leung, 2005).

Accordingly, we expect that the varied experience of

the developers participated to the measurements

may affect the accuracy of counting the function

points. On the other hand, the subjectivity, skills, and

experiences of the project managers and team

leaders who filled the developers’ competency forms

may have a strong influence on the accuracy of both

the DCI and TCI calculations.

6.4.3 External validity

Although the TCI model is successfully evaluated, we

suggest that our model is neither comprehensive,

nor generic. The following threats may impact its

Due to the mentioned difficulties in data

collection, the number of the datasets used in

evaluating the TCI model is very few.

This research establishes a unified software competency

framework consisting of the technical and nontechnical

competencies needed by the software developers. Moreover, it

introduces the DCI and TCI indices to quantify the individual

developer’s competencies as well as the collective competency of

the development team.

As a step towards incorporating the human factors in the software

cost control models, this research shows a correlation between

the team competency and the percent of the cost of software

reworks, which is not provided by the current software cost

control models such as the EVM. Moreover, the suggested team

competency index itself could be used as a monitoring and

controlling tool throughout the lifecycle of the project. All these

contributions may have both scientific and practical benefits.

The direction of the future research is to extend the EVM by

incorporating human factors such as the TCI. Also, the impacts of

the collective attributes of the software teams need deeper

investigation. Moreover, the impact of the software development

lifecycles, especially the agile methods, will be studied.

7. Conclusion and future work

Appendix A. EVM in brief

The Project Management Body of Knowledge (PMBOK) describes

the EVM main parameters as follows:

• Budget At Complete (BAC): is the authorized budget for the

whole project activities.

• Planned Value (PV): is the authorized budget assigned to the

work scheduled.

• Actual Costs (AC): is the amount of money spent for the work

accomplished. In fact, it is the sunk cost.

PAGE 69

JOURNALMODERNPM.COM SEPTEMBER/DECEMBER 2018

Earned Value (EV): is the percent of the total budget

completed at a point in time. EV is usually calculated by

multiplying the budget for an activity by the percent

progress for that activity. EV is usually calculated as

follows.

TOWARDS INCORPORAT ING HUMAN FACTORS IN THE SOFTWARE

PROJECT COST CONTROL MODELS

CPI < 1 indicates that there is a cost overrun while SPI >

indicates that the actual performance is ahead of the

estimated schedule. CPI = 1 indicates that the cost efficiency

is as planned.

Then, EVM provides forecasting of the project cost according

to the current performance. This is done through the

Estimate AT Complete (EAC). EAC is given by:

inquiries, external interfaces to other systems, and logical

internal files. Each system function has its weight according

to the level of complexity as shown in Table B.1 (IFPUG,

2010).

The weights are assigned according to the degree of

complexity of each characteristic. Then, the Value

Adjustment Factor (VAF) is calculated as follows:

 VAF = 0.65 +0.01 x Total

Finally, the adjusted function points are given by,

 FP = VAF x UFP

(A.1)

Where %C is known as the Percent Complete of the work

planned.

In terms of the parameters mentioned above, EVM provides

two indicators to measure the schedule and cost

performances. These are:

 Schedule Performance Index (SPI): It measures how the

project team is efficiently performing their tasks. It is

calculated as follow.

Cost Performance Index (CPI): Provides a measure of the

cost efficiency of the budgeted resources. It is given by:

(A.2)

(A.3)

(A.4)

(A.5)

Equation A.4 is used when focusing on the cost

performance, while Equation A.5 is used when considering

the impact of both the cost and schedule performances.

Appendix B. FPA in brief

FPA measures the functional requirements of the software

according to their complexities. It classifies software into five

distinct system functions, mainly; external inputs, outputs,

TABLE B.1: FPA system functions and

their associated sizes

To use Table B.1, a detailed analysis of each of the system

functions is performed in terms of the following factors:

The number of data element types (DET)

The number of record element types (RET)

The number of file types referenced (FTR)

The sum of the weights of all system function determines

the unadjusted size of the software in function points (UFP).

This value is adjusted by a multiplier called the Value

Adjustment Factor (VAF). The VAF is determined depending

on the complexity of the system characteristics in the

operational environment. The weights are shown in Table

B.2.

TABLE B.2. Global system characteristics

TABLE C.1: Cost of reworks (CoR)

TABLE C.2. Developers’ competency analysis

Appendix C. Projects’ data

*Com. ID = Competency ID, **Crit. ID =Criteria ID
TABLE C.3: Calculations of

the TCI vs. %C

PAGE 71

JOURNALMODERNPM.COM SEPTEMBER/DECEMBER 2018

AUTHORS

Acuña, S. T., Gómez, M. N., Hannay, J. E., Juristo, N., Pfahl, D. (2015).

Are team personality and climate related to satisfaction and

software quality? Aggregating results from a twice replicated

experiment. Information and Software Technology, 57, 141-156.

AlQaisi, R., & Gray, E. (2013). Echoes from the Field: An Empirical

Study of Contemporary Software Engineering Practices in Some

Software Development Organizations in the UK. In BCS Quality

Specialist Group 21st Annual SQM 2013 Conference, BCS London,

UK (Vol. 4).

AlQaisi, R., Gray, E., Steves, B. (2017). Software systems engineering:

A journey to contemporary agile and beyond, do people matter?. In

BCS Achieving Software Quality in Development and Use. SQM,

BCS, Southampton, UK, , pp. 159-173

AlQaisi, R., Gray, E., Moffat, D., Wang, B. (2016). ‘Echoes from the

Field’Study Outcome and Discussion: Reflections on Software

Systems Engineering Practice. In INCOSE International Symposium

(Vol. 26, No. 1, pp. 1624-1638).

Anderson, G., Keith, M. J., Francisco, J., Fox, S. (2018). The Effect of

Software Team Personality Composition on Learning and

Performance: Making the" Dream" Team. In Proceedings of the 51st

Hawaii International Conference on System Sciences.

Tarig Ahmed Khalid is a PhD research scholar at Multimedia University,
Malaysia. He obtained his B.Sc. and M.Sc. in electrical engineering from
University of Khartoum, Sudan. He is a certified project management
professional (PMP). His research interests include software project
management, requirements engineering, and fuzzy systems. He is a senior
member of the IEEE and member of the PMI.

Tarig Ahmed Khalid

Eng-Thiam Yeoh is a Senior Lecturer in Faculty of Computing &
Informatics, Multimedia University, Malaysia. He obtained his PhD from
Multimedia University in 2009, after obtaining his M.Phil degree from
University of Cambridge, England (1991) and his first degree in
Computer Science from National University of Malaysia (1989). His
research interests include e-learning, software engineering, multimedia
education, fuzzy systems, natural language processing and big data. He
is a member of the IEEE

Eng-Thiam Yeoh

TOWARDS INCORPORAT ING HUMAN FACTORS IN THE SOFTWARE

PROJECT COST CONTROL MODELS

TOWARDS INCORPORAT ING HUMAN FACTORS IN THE SOFTWARE

PROJECT COST CONTROL MODELS

References

Bennatan, E. M. (2000). On time within budget: software project

management practices and techniques. John Wiley & Sons, Inc.

Bloch, M., Blumberg, S., Laartz, J. (2012). Delivering large-scale IT

projects on time, on budget, and on value. Harvard Business

Review. [Online]. Available: https://www.mckinsey.com/business-

functions/digital-mckinsey/our-insights/delivering-large-scale-it-

projects-on-time-on-budget-and-on-value. [Accessed: 10-May-

2017].

Boehm, B. W. (1981). Software engineering economics (Vol. 197).

Englewood Cliffs (NJ): Prentice-hall.

Bourque, P. and Fairley, R.E. (eds.)(2014). Guide to the software

engineering body of knowledge, Version 3.0, IEEE Computer

Society; www.swebok.org.

Broza, G. (2012). The Human Side of Agile: How to help your team

deliver. 3P Vantage Media, ISBN-13: 978-0988001626

Capretz, L. F., Ahmed, F., Silva, F. Q. (2017). Soft Sides of Software.

Journal of Information and Software Technology, 92(2017), 92-94.

Casanovas, J., Colom, J. M., Morlán, I., Pont, A., Ribera, M. (2004).

Libro Blanco sobre las titulaciones universitarias en Informática

en España [White Book: University degrees in computer

engineering]. Madrid: ANECA.

Chandrasekaran, S., Gudlavalleti, S., Kaniyar, S. (2014). Achieving success

in large complex software projects. McKinsey & Company, 1-5. [Online].

Available: https://www.mckinsey.com/business-functions/digital-

mckinsey/our-insights/achieving-success-in-large-complex-software-

projects. [Accessed: 10-June-2015].

Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., GarcíA-

PeñAlvo, F. J., Tovar-Caro, E. (2013). Competence gaps in software

personnel: A multi-organizational study. Computers in Human Behavior,

29(2), 456-461.

Colomo-Palacios, R., Casado-Lumbreras, C., Soto-Acosta, P., García-

Peñalvo, F. J., Tovar, E. (2014). Project managers in global software

development teams: a study of the effects on productivity and

performance. Software Quality Journal, 22(1), 3-19.

de Souza, A. D., Rocha, A. R. C., Cristina, D., Constantino, B. A. (2014, June).

A Proposal for the Improvement of Project’s Cost Predictability Using

Earned Value Management and Quality Data–An Empirical Study. In

European Conference on Software Process Improvement (pp. 170-181).

Springer, Berlin, Heidelberg.

DeMarco, T., Lister, T. (2013). Peopleware: productive projects and teams.

Upper Saddle River, NJ: Addison-Wesley.

Ghosh, S. (2015). Systemic Comparison of the Application of EVM in

Traditional and Agile Software Project. Integration, 5, 3. [Online].

 Available: http:// pm.umd.edu/files/public/documents/student-

papers/2011/ [Accessed: 18/5/2015)]

International Function Points Users Groups (IFPUG) (2010). Function

Point Counting Practices Manual Release 4.3.1. Netherland.

Ju, H., Xu, S. (2017). Research Status of Earned Value Management. In

Proceedings of the Fourth International Forum on Decision Sciences (pp.

449-459). Springer, Singapore.

Ho-Leung, T. S. O. I. (2005). To evaluate the function point analysis: a case

study. International Journal of the Computer, the Internet and

Management, 13(1), 31-40.

Khalid, T. A., Yeoh, E. T. (2015, September). Controlling software cost

using fuzzy Quality based EVM. In Computing, Control, Networking,

Electronics and Embedded Systems Engineering (ICCNEEE), 2015

International Conference on (pp. 275-280). IEEE.

Lenberg, P., Feldt, R., Wallgren, L. G. (2015). Behavioral software

engineering: A definition and systematic literature review. Journal of

Systems and software, 107, 15-37.

Manifesto, Chaos (2013). Think big, act small. The Standish Group

International Inc, 176. [Online]. [Accessed: 22-Dec-2016].

Kitchenham, B. A., Pfleeger, S. L., Pickard, L. M., Jones, P. W., Hoaglin, D.

C., El Emam, K., Rosenberg, J. (2002). Preliminary guidelines for empirical

research in software engineering. IEEE Transactions on software

engineering, 28(8), 721-734.

Meyer, A. N., Barton, L. E., Murphy, G. C., Zimmermann, T., Fritz, T. (2017a).

The work life of developers: Activities, switches and perceived

productivity. IEEE Transactions on Software Engineering, 43(12), 1178-1193.

Meyer, A. N., Zimmermann, T., Fritz, T. (2017b). Characterizing

Software Developers by Perceptions of Productivity. In Empirical

Software Engineering and Measurement (ESEM), 2017 ACM/IEEE

International Symposium on (pp. 105-110). IEEE.

Mishra, D., Mishra, A. (2011). A review of non-technical issues in

global software development. International Journal of Computer

Applications in Technology, 40(3), 216-224.

Naeni, L. M., Shadrokh, S., Salehipour, A. (2014). A fuzzy approach

for the earned value management. International journal of project

management, 32(4), 709-716.

Naval Air Forces Organization (NAVAIR) (2004), Using software

metrics & measurements for earned value toolkit [Online].

Available: https://acc.dau.mil/adl/en- [Accessed: 10/5/2015]

Pracharasniyom, K., Utsugi, S., Koizumi, Y., Hirose, S., Aso, H.,

Konosu, T. (2015) Human Resource Management in Small-scale

Project. Journal of Business Administration and Languages

[Online]. Available:

http://journal.tni.ac.th/upload/files/pdf/Human%20Resource%20M

anagement%20in%20Small-scale%20Project.pdf [Accessed:

10/10/2017]

Project Management Institute, PMI (2017). A guide to the project

management body of knowledge – 6th ed. Newton Square, PA: PMI.

Schwaber, K, Sutherland, J (2017). The scrum guide. The definitive

guide to scrum: The rules of the game. Scrum.org, 268.

Sedelmaier, Y., Landes, D. (2014). Software engineering body of

skills (SWEBOS). In Global Engineering Education Conference

(EDUCON), 2014 IEEE (pp. 395-401). IEEE.

Shneiderman, B. (1980). Software psychology: Human factors in

computer and information systems. Cambridge, MA: Winthrop

Publishers

Solomon, P. J. (2005, July). 1.4. 2 Performance‐Based Earned Value®.

In INCOSE International Symposium (Vol. 15, No. 1, pp. 180-197).

Vargas, R. V. (2004). Using earned value management indexes as a

team development factor and a compensation tool. In Prague:

Project Management Institute Global Congress EMEA.

Waychal, P., Capretz, L. F. (2017). Need for a Soft Dimension. arXiv

preprint arXiv:1704.00801.

Xu, J., Zhang, H., Li, F. (2010, December). Project integrated

management based on quality earned value. In Information

Science and Engineering (ICISE), 2010 2nd International Conference

on (pp. 432-435). IEEE.

Yilmaz, M., O’Connor, R. V., Colomo-Palacios, R., Clarke, P. (2017).

An examination of personality traits and how they impact on

software development teams. Information and Software

Technology, 86, 101-122.

Zou, K. H., Tuncali, K., Silverman, S. G. (2003). Correlation and

simple linear regression. Radiology, 227(3), 617-628.

