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Abstract:  Lacking information challenges the management of port

operational uncertainty in estimating the situation to support a decision on

reactivity planning. This paper applies Digital Twin (DT) to model a replicated

virtual port operation from a real-world port of Thailand. The proposed DT

model offers a tool to accelerate generating data of the port operation with

configurable uncertainty. The model is validated by using generated data

from the DT model compared with the real-world data. The result shows that

the DT model produces the same behaviour as the real-world system. An

outcome of this paper is a DT model eligible to generate port operation data

for later application with machine learning to predict the port capacity under

uncertainty to support reactivity planning.
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1. INTRODUCTION
In 2020, the coronavirus pandemic (COVID-19) brought

several changes affecting maritime transport globally,

including the port operation. Economic tensions drive the

trade pattern to alternative markets and suppliers away from

China e.g., South-East Asian countries. Flows of the

container volume are changed according to changes on-

demand, as well as the vessel capacity managed by carriers.

Carriers control their costs during the situation by adjusting

strategies such as service suspension and limiting container

volume. In particular, carriers applied the policy of blanking

scheduled sailing implying difficulties in the time controlling

along its route (UNCTAD, 2020). Consequently, ports are

impacted by these changes including additional operation

policies for the COVID-19 outbreak. In further extreme

conditions, several ports have to face challenges due to

severe weather resulting in suspension of ports and the 

following of high container volume, the shortage of haulage

and port congestion (The Loadstar, 2020a, 2020b). The

environment of maritime logistics consists of various

uncertainties, the most noteworthy of port functions is the

ability to manage the port operation to accommodate cargos

through fluctuations and unexpected circumstances (Burns,

2018).

During the period of port congestion, the vessel berthing

time, including the estimated time to arrival (ETA) and the

estimated time to departure (ETD) were rescheduled several

times before the actual berthing. Even after the berthing, the

ETDs were also updated. This implies an inaccuracy in the

estimation for planning the berth allocation when the port is

under an uncertain situation. Further, changes in the berth

allocation have impacted to the port efficiency. Several

activities of port and vessel operations depend on the berth 
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 schedule such as the scheduling of other port resources and

the next vessel schedule on the berth. On each update of the

ETA/ETD, all the following activities require rescheduling and

this further accumulates uncertainty in the chain of port

operations. Recent berth allocation models are in

mathematical optimization. Several models considered

uncertainty, such as the vessel arrival and vessel handling

time. The uncertainty value is estimated by the probability

distribution or by the port manager. However, the probability

distribution is limited by the bounding range and port

manager’s estimation can be limited by the experience.

Therefore, in order to obtain information of uncertain port

situation that is consistency to the real operation, this study

proposes an approach of port digital twin model for

supporting the uncertainty management. The model

simulates the port operation with uncertainties and generates

data necessary for further prediction of vessel’s ETA and

ETD under the uncertain circumstance to assist the planning

decision of berth allocation by evaluating port capability to

maintain the plan at each moment on a more or less in the

long time horizon according to the new data available at

each moment.

This paper is structured as follows: Section 2 describes

background of maritime container port and uncertainty.

Section 3 justifies the management of berth allocation with

uncertainty. Section 4 proposes the modelling of digital twin

for port operation prediction. Section 5 presents results of

digital twin validations and Section 6 concludes the paper.

2 BACKGROUND

2.1 MARITIME CONTAINER PORT
The growth of global containerized logistics increased every

year along the ten year of 2010-2019 at the rate of 1.6% to

7.7% percents. Even in 2019, the growth rate was 3.1%

lower than in 2018, it achieved 811 million TEUs of

containers (twenty-foot equivalent unit). However, in 2020

the coronavirus pandemic influenced several changes of

global consumption patterns in the whole supply chain,

including the maritime containerized logistics. Resilience to

changes became a focus in the industry perception

(UNCTAD, 2020).

The resilience of container port operation can affect its 

 performance, global ports and shipping supply chain. 

Container port is the central spot switching containers

among transportation modes (e.g., marine vessel, external

truck, local barge and train). Since the handling operations

are interconnected so during the operation, the container

port has to interface impacts from disturbances and

uncertainties from external factors and, also, internal factors.

On another viewpoint, the resilience of port offers a chance

to subsidize these impacts and prevents the impact size

expansion to downstream of supply chain.

The maritime containerized logistics involves three major

actors; Vessel liners, container ports and hinterland

transportation. When an unexpected event occurs externally

out of port such as vessel delay, port has an ability to adjust

its resource configuration in order to accelerate/decelerate in

responding to the situation. Ultimately, the port gets the

vessel schedule continuing as planned and no effect

influences the next vessels. However, the adjustment of port

operations on the seaside can affect the other part of port

operations due to the interdependency of container flows

within the port.

Container port logistics transfers both import, export and

transshipment containers between seaside and hinterland

accesses in bidirectional flow using the same set of port

resources consisting of berth space, quay cranes, internal

trucks, yard cranes, reach stackers and yard storage space.

Container is the microscopic element performing port

operation activities to achieve its logistics purpose. On each

operation activity, a container requires port resource(s) for a

moving or storing activity. Figure 1 illustrates three

connecting flows of containers in the chain of port operations

as follows:
FIGURE 1: FLOWS OF CONTAINERS ON PORT OPERATION

1. Vessel-Berth loading/unloading: on vessel arrival (a

marine vessel or local barge), berth space, a number of

quay cranes and a number of internal truck were

allocated. The vessel stowage plan provides the list of

container sequences for loading/unloading at the specific

position on the vessel. Quay cranes are scheduled

according to the stowage plan to transfer containers

onto/from internal trucks.

2. Berth-Yard transferring: internal trucks transfer

containers between the quay crane (Qcrane on Figure 1)

and the yard crane/stacker (Ycranes on Figure 1). At the

transferring points that carrier resources are switched,

the container and the resource have to wait for each

other. In addition, The yard crane processes the

container at the specific point in the yard stack. The

reshuffling of containers may be required and cause

additional operation time.

3. Yard-Hinterland pickup/discharging: external truck or

train comes into the port through the hinterland gate to

pick up/discharge the container. Once the external truck

arrives the yard, it waits for the yard crane/ stacker to

transfer the container to/from the specific point in the

yard stack. The reshuffling of containers may be required

and caused additional operation time.

The port operation is a complex system involving three

container flows connected by the interdependency of

resource sharing. When a container is holding a resource,

the other containers from the same or the connecting flow

have to wait. The time of resource holding influences the

performance of all container flows. In particular, when the

port is affected by impacts of disturbance and uncertainty

from both external and internal, performance of the container

logistics on the port can become vague due to the

interdependency of operation.

2.2 PORT OPERATIONAL UNCERTAINTY
Threat and uncertainty exist in the supply chain including the

port operation. Port has challenges in economic crises,

heath crises, natural disasters, terrorist attacks and

unexpected events in operation. Their impacts can disrupt

port infrastructure and operation performance. Ports require

absorptive: Strength of negative impact is absorbed at a

capacity level while the port operates with normal

activities. Infrastructure and assets strategically are

installed for handling with uncertainty in advance.

to manage various kinds of unforeseen uncertainties to level

up their performance to the position of competitive

excellence. Efficiency, effectiveness and resilience to

disruptions are three major components for achieving the

port performance. Efficiency represents the operation

performance such the output productivity under a limited

resource. Effectiveness represents the fulfilling of customer

expectations. Resilience represents the port capability in

managing threats (Notteboom, Pallis, & Rodrigue, 2022).

Efficiency rarely distinguishes the situation with or without an

interference. Its purpose aims to achieve a service level.

While, the resilience proposes abilities that directly interact

with disruptions and uncertainty.

Since this study focuses in managing uncertainty during the

operation, therefore, we scope to approaches that support

the operation to maintain its efficiency level by performing

activities derived from resilience abilities when the port is

interfered with by uncertainty/threat. Resilience is commonly

defined as an ability to recover the situation from disruptions

or disturbance and usually focuses in strategic solving. In

engineering or physical sciences, resilience focuses on the

resistance to the shocks or negative impact and the ability in

returning to or resuming the stability. In ecological sciences,

resilience is the ability to absorb the disturbance and to

adapt to another stability. Another definition for complex

adaptive systems theory, resilience is the ability to anticipate,

to reactivity or to reorganization in order to minimize impact

from disturbance (Notteboom et al., 2022). Port is a complex

system involving several stakeholders and interdependence

of sub-operations in the port system. Therefore, under the

environment with various kinds of uncertainty/threat, the port

resilience should have the ability to mitigate impacts

resulting from uncertainty/threat in order to minimize the lost

and to prevent the dispersing of negative impact to

downstream operations.

Vugrin, Warren, and Ehlen (2011) and Notteboom et al.

(2022) defined three major abilities to maintain port

resilience as absorptive, adaptive and restorative:
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adaptive: port has ability in anticipating negative impact

from uncertainty and respond by adjusting operation

activities to mitigate the strength of impact during the

interference.

restorative: port performs activities to recover the

operation to its service level acceptance.

Even these strategic approaches offer the prevention and

absorptive of negative impact, however, uncertainty and

negative impact still exist to be managed in all areas of the

port operation. We examined studies in the port operational

problems with concerning in operational uncertainty in order

to explore types of uncertainty interfering the port and

approaches of resilience ability applied to the problem.

Several studies in port resilience measured cause-seffect of

threats and assessed how these impacted to the port in the

dimension of resilience capacity. Hossain et al. (2019)

assessed cause-effect of the tornado to the resilience of the

port capacity integrating with capacity enhanced factors such

as maintenance, cyber infrastructure, additional equipment,

and etc. They quantified resilience capacity in absorptive,

adaptive and restorative using Bayesiam in order to suggest

leading factors that potentially improve port flexibility in case

of the tornado. Russell, Ruamsook, and Roso (2020)

examined uncertainty factors around port areas; seaside

access, yard platform, hinterland access and port system-

wide. They classified levels of capacity that impacted to each

uncertainty factors as static asset, adjustable operation or

logistics partner interaction. They proposed strategies to

improve flexibility in the fluctuation of container capacity, for

example, committing contract agreements with shipping

partners, applying digitalization to obtain transparency in

logistics platform and extending infrastructure. These studies

show that uncertainty factors and container capacity have

significant relation to the port operational uncertainty.

However, these studies focused on the handling with

uncertainty at strategic level while the management of

uncertainty in the level of port operational system is rarely

derived.

Operational resilience was conceptualized in a complex

network consisting of nodes and links representing the

functional ability of each node and relationships in dispersing

negative impact to related nodes, respectively. System 

functionality acted for the resilience of the network system.

Ganin et al. (2016) adopt activities of operational resilience

with system functionality and time dependency as illustrated

in Figure 2.

Activities were adopted from the National Academy of

Sciences (NAS) for managing the disaster resilience. Critical

functionality is changed on each phase depending on the

weight of negative impact and system activity performing

against the impact. Interpreting this concept to the port

operational system in each phase as follows:

Uncertain to demand

Uncertain to resource availability

 Uncertain to operation interdependency

Several studies consider each factor in its behaviour and

impact to the port capacity. However, the port has a chance

to confront several kinds of uncertainty at a time.

Considering the conditions of each factor one by one seems

to be a huge task for managing the port at the operational

level. Therefore, we consider from the viewpoint of port

operation and classify uncertainty factors into 3 kinds:

Uncertain to demand includes any possible changes of

container capacity from the external to be serviced by the

port, specifically to the number of containers

arriving/departing the port and their arrival/departure time.

Uncertain to resource availability and uncertain to operation

dependency effect to the internal productivity. Uncertain to

resource availability considers the capability of port facilities

performing the operation, e.g., breakdown, in maintenance

and etc. Uncertain to operation interdependency includes

any situation circumstance affecting the cooperation of

facilities in the port operation network.

The port operation faces various kinds of uncertainty. Table

1 shows studies of the port operation in various functions

concerned with uncertainty and its impact on the

performance of the port function. On the berth allocation and

quay crane (QC) assignment, several studies concerned in

the punctual of vessel arrival time as it affects the start time

of berthing and uncertainty of vessel operation time caused

by the internal truck operation (Xiang & Liu, 2021), container

volume (Zhen, 2015) or weather condition (Liming, Jun, &

Jianfeng, 2021). In reverse, the internal truck is affected by

the quay crane queue and also the yard crane (YC) queue

(Huang, Wang, & Shi, 2014). Further, YC is impacted by

uncertainty to the external truck arrival and uncertainty to the

vessel stowage sequence (H. Yu, Ning, Wang, He, & Tan,

2021).

It is noticed that the port may have to face all of these kinds

of uncertainty at the same time under the interdependency of

back and forth operation relations. Not only the container is

transferred between the facility linkage, but also the

influence of uncertainty is transferred as well. However,

solutions proposed to handle uncertainty include only some 

specific kinds of uncertainties while the impact of uncertainty

can travel through the chain of port operations. Therefore, in

order to manage uncertainty affecting the chain of port

operation, we propose that the port operation management

should consider uncertainty in the viewpoint of port operation

as the proposed three classified types of uncertainty

mentioned above.

FIGURE 2: OPERATIONAL RESILIENCE AND CRITICAL

FUNCTIONALITY DURING DISRUPTION CYCLE (GANIN ET AL., 2016)

Absorb activity: To perform the operation within a

negative impact environment based on infrastructure and

asset strategically installed for handling with uncertainty.

Recover activity: To recover port operational service

level back to normal state.

Adapt activity: To apply the new activity

• Plan activity: To anticipate uncertainty and negative impact

reaching to the port. Also, to estimate critical functionality

such as the port capacity in the next phase of absorbing

activity. Aiming to plan the operation to be consistent with

the estimated situation with minimized impact.

Resilience requires port capabilities in anticipation,

preparation for, responding to and recovering from

threat/uncertainty. Adaptive forecasting is still limited.

Various factors cause uncertainty to the global supply chain

network. A major is internationalization trading e.g.,

exchange rate, trading barriers, competition and etc.

resulting in uncertain to demand, product pricing, costs and

lead times. The other factors such as natural disasters and

terrorist attacks cause uncertain to operation capability as

well.

TABLE 1: PORT OPERATIONS CONCERNING IN UNCERTAINTY AND

ITS POTENTIAL IMPACT

2.3 PORT OPERATIONAL MANAGEMENT

According to the flow of port resource management

proposed by Bierwirth and Meisel (2010) as shown in Figure

3, port management is separated into three areas; the

seaside, yard and hinterland. At the operational level,

resource planning on the seaside and on the hinterland side

have impacted the resources planning on the yard. Both the

seaside and the hinterland side receive demand from the

external, therefore, the port resources are managed the plan

accordingly to demand.

On the seaside, before a vessel trip, liner schedules port

visits on its route trip. Port makes agreements on a plan of 
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vessel visit, including the estimated of vessel arrival

time(ETA), the estimated of vessel departure time(ETD), an

approximated number of containers with container

descriptions. Information is then used for the berth allocation.

The liner and the port then make an agreement on the initial

schedule of vessel visits. Planning of the other resources as

connected along the resource management flow on the

Figure 3 such the workforce, quay crane and yard crane

scheduling is later planned according to the berth allocation.

On the hinterland side, external transportation such as

external truck and train are serviced by the schedule and

non-schedule(stochastic arrival) depending on the port

policy. Yard crane and internal transportation are reserved

based on the gate policy with a condition that seaside

vessels usually have a higher priority in holding port

resources.

Based on the flow of resource management, the berth

allocation seems to be the critical point. During the operation

when there are changes that shift the schedule of the berth,

plans of the other resources can be impacted through the

flow. On the uncertain about demanding such as vessel

delay, it directly impacts the start time of berthing. On the

uncertain to resource availability such as machine

breakdown, this can affect the vessel operation time

resulting in a long time of berth allocation. Even the high

traffic of external truck arrival with uncertain to operational

dependency can also influence the vessel operation time.

The other resources and the other vessels may or may not

be impacted by the change of berth allocation. However,

acknowledging of how much time the berth allocation will be

changed from the plan in advance allows a spare time for the

port to make a decision and prepare for the reactivity of port

resources.

3 RELATED WORK: BERTH ALLOCATION MODEL
Berth allocation models perform majorly in two approaches.

First, the proactive planning is performed before the actual

berthing e.g., the rolling-time horizon (Zhen, 2015) and/or the

robust buffer time (Iris & Lam, 2019). Second, the reactive

planning is performed after an incident disrupted the original

plan e.g., delay of vessel arrival, to search for the re-

planning solution of all affected vessels by minimizing the

change impact in delay time and recovery cost comparing to

the baseline (Xiang, Liu, & Miao, 2018). However, the

information used for the reactivity seems to be limited of

uncertainty type and static, not actually from the recent

operation situation where uncertain factors can be different

by the nature of uncertainty. It is difficult for the planning in

the abnormal situation with unknown dynamic uncertainty

such as congestion. The incapacity to apply the current

planning is the trigger event for the reactivity. Our goal is to

predict this incapacity as early as possible.

To our best knowledge, few studies address the use of data

based on dynamic characteristics of uncertainty in the berth

allocation model. The actual plan of vessel arrival and

handling time may deviate from the estimation and disrupt

the baseline schedule. For the vessel arrival, J. Yu et al.

(2018) predicts uncertainty from data mining to learn the ship

arrival based on dynamic tracking of vessel AIS data.

The estimation of handling time is limited, Umang, Bierlaire,

and Erera (2017) used a finite set of the dynamic model

which has not yet reflected the actual operation situation.

Cahyono, Flonk, and Jayawardhana (2020) use the actual

states of vessel arrival and operational status concerning

uncertainty in the operational constraints but the collected

dataset is still limited in a range of time. In addition, as 

mentioned in the section 2.3, the port operation functions

cooperate and are interdependent. The trace of uncertainties

is connected to the operational performance.

The proposed approaches in literature integrate only some

parts of uncertainties. Given the numbers of uncertainties

presented above, it is obviously very difficult to develop a

model integrating all these uncertainties. Moreover, not all

uncertainties are directly observable (e.g., human error) and,

therefore very difficult to model.

For uncertainties that cannot be directly observed, we can,

however, observe their effects on the performance of port

operations. Thus, in order to predict the incapacity to apply

the planning, we propose to develop a digital twin allowing to

generate in an accelerated way a sufficient volume of data to

apply machine learning for the prediction of congestion. The

following section aims at introducing the notion of a digital

twin and our approach to creating this digital twin.

4 DIGITAL TWIN OF PORT OPERATION

4.1 DIGITAL TWIN
The term Digital Twin(DT) was defined as a mirroring space

model or mirroring product in the context of product life

management (PLM) by the University of Michigan in 2002

(Grieves & Vickers, 2017). The model represents the vision

of the physical object through its lifecycle. DT model

facilitates the creation, building, testing, and monitoring the

product or process in ‘virtual’, offering the exploration into the

product/process without risk in operation. The model is

composed of a real space containing physical object(s), a

virtual space containing virtual object(s) and a linkage of

data flow between the real space to the virtual space. Later,

the term focus is shifted to the area of complex systems

such as aerospace, manufacturing, and production.

In the industry of port management, leading ports have

implemented smart sensors and communication technology,

such as 5G network, camera, AR, VR and etc. to support the

digital twin of virtual port operation in real-time. The digital

twin offers a visual view similar to the satellite with the real-

time update elements in the port spacing area, promoting the

accuracy in positioning the cargo element.

Among literature work in DT for the port operation, a few

works were studied using information from the DT to support 

a decision in the operation. Hofmann and Branding (2019)

proposed a DT to support truck dispatching operators. The

IoT platform acquired input data for the database. The

simulate-based DT was then updated and provided

information of the current system status to the integrated

algorithm. The algorithm evaluated and suggested the

dispatching solution for the operator. Zhou et al. (2021) used

information of DT as a realistic prediction of port

performance when the port was under possible disruptive

events and the post-event recovery actions were taken. This

work claimed to be the first study applying granularity of

uncertainties to the port operation digital twin.

4.2 MODELLING OF DIGITAL TWIN
The digital twin proposes abilities to visualize the port

operation, to generate/estimate information and to input

uncertainty factors that might occur as scenarios in the

operation. These abilities not only perform in the real-time

manner, but information further promotes an accuracy of the

operation estimation in a nearly coming time. However, we

have not yet found the study of digital twin replicating the

port operation system during the confronting to uncertainty

factors.

The virtual system of the DT generally represents the vision

of physical object(s) similar to the simulation. However, in

addition to the simulation capability, the virtual system must

have the same behavior as the real system. They must be

synchronized in all its life under two trading of

data/information. First, on changes to the physical system,

the virtual system must be able to calibrate with the real

situation. Second, the virtual system should be able to

generate useful output to act on the physical system.

Modelling a DT model should consider these

synchronizations between the physical-virtual systems.

This research is interested in the impact of uncertainty

factors resulting on the berth allocation, specifically in the

deviation of vessel berthing time and the deviation of vessel

departure time. DT is used to represent the port operation

with uncertainty factors in the future time-space. By using

data of a real port system, the virtual environment of port

operation is modelled. Data of container arrivals is used as

input to proceed the operation. The uncertainty factors are 

FIGURE 3: FLOW OF PORT RESOURCE MANAGEMENT, BIERWIRTH AND MEISEL (2010)
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Port physical layout: travel time of a container between

operation stations depends on distance. The virtual 

used to trigger operational interference. DT then fast-

forwards the operation with these settings to the future

space. Finally, the vessel berthing time and departure time

are observed as the output of DT.

On the first synchronization of physical-to-virtual, the

validation for ensuring virtual operation behavior is

conducted through operation output. By applying the same

set of input captured from the physical operation, the virtual

system should produce the same behavior of output

comparing to the physical output.

On the second synchronization of virtual-to-physical, this

model generates output of the vessel berthing time and

departure time in the future hours. They can be compared to

the berth allocation plan to specify the time deviation and

further impact on other vessels/resource plans. The

generated information is the feedback to the physical

operation by supporting the reactivity decision, which

includes the impact of recent uncertainty factors into

consideration.

Modelling the DT for port operational uncertainty

management proceeds in four steps, 1)Data acquisition,

2)Simulation modelling, 3)Generation of simulation data and

4)Model validation. Three operational uncertainty factors are

included; uncertainty due to the external demand,

uncertainty due to the internal resource availability and

uncertainty due to the operational interdependency.

4.2.1 Data acquisition
Four areas of data collection are required from the physical

operation. The first dataset is for constructing the port

operation environment including, the physical layout, the

number of port facilities, their capabilities and operation

policy. The second dataset is data of container inputting the

port operation. The third dataset is uncertainty factors for

triggering changes to the port operation. Finally, the fourth

dataset is the output of port operation consisting of the

deviation of vessel berthing time and departure time.

1. Port operation environment consists of the following of

data elements:

Port facility: includes the number of facilities and

their capability.

Port operation policy: policies of operation task are

different on each port e.g., the sequence of vessel

loading/unloading or yard allocation. This data

supports the operation time of DT to work similarly

to the physical operation.

distance space should be the same as the physical

space.

2. Container input for the port operation on each

transportation mode arrival concerns on both data of

the time and the number. The arrival of motor vessels

is based on schedule plans, while local barges usually

depend on the arrival of motor vessels. The

transferring rate of vessel containers depends on the

committed speed/number of quay crane. The arrival

rate of external truck is various by the time of the day.

3. Uncertainty factors triggering the operation

assuming that the first and second dataset are used to

construct a fundamental structure for DT execution at

normal scenarios. This dataset is for executing

operation scenarios with uncertainty. Only data of the

vessel arrival pattern which contains changes to the

original arrival plan is required on this dataset for

external demand uncertainty. For the internal resource

uncertainty, the availability/capability of port facility is

configured by the number decreasing/increasing. While

the operational interdependency depends on the whole

operation condition, not direct configurable.

4. Output of the port operation towards the research

interest, the vessel berthing time and the vessel

departure time are the output. Collecting this data from

physical system to compare with the virtual system for

DT model verification.

4.2.2 Simulation modelling

The DT is modelled in microscopic discrete event-

based simulation by considering containers as the

microscopic object. Simulation transfers a container

between two port facilities creating a linkage of 

Input validation: inputs (’truck arrival rates’ and ’vessel

arrival deviation’) are based on distributions, the

validation ensures simulation input is similar to the

physical system.

Output validation: to compare ’vessel operation

deviation’ and ’vessel departure deviation’ validating the

final output of the port system processing under an

uncertain environment.

operation time between them. This facility-facility link bonds

a numeric information. Simulation can apply uncertainty as

an event interfering operation time so assuming that a

container is also a carrier transmitting an impact of

uncertainty. Through its travel on port facilities, the

simulation output of vessel operation time and departure

time is then interpreted as the accumulated result of an

uncertainty impact through a time-space.

4.2.3 Generation of simulation data

According to two physical-virtual synchronizations mentioned

earlier in this section, two sets of output generated for

1)validating the physical-to-virtual synchronization and

2)making use of output to feedback on the virtual-to-physical

synchronization.

To validate the DT model, the simulated output is used to

compare with the output of physical system under the

condition that they must be from the same timing or the

same event. This experiment captured output for validation

on events of vessel arrival and departure.

For further analysis of virtual-to-physical, the pattern of

simulated output depends on the purpose of data usage.

This DT model purposes to support the reactivity and to be

aware the upcoming of uncertainty impact beforehand, the

simulated output should be executed continually in advance.

Periodical data is chosen.

4.2.4 Model validation

Ensuring that the virtual and the physical port operation

generate the same behavior. After the operation with the

same set of input, the process behavior and system output

are expected to be similar. The validation is separated to

input and output validations.

5 EXPERIMENTATION

5.1 CONTEXT
The experiment used the case of a port in Thailand. The port

is a cargo seaport service, both container and breakbulk

shipments. For the container ships, the port facilitates ten

quay cranes on 1,000 meters hybrid berths for motor vessels

and local barges, transferring 20-25 container moves per

hour. On the yard, it consists of 23 blocks with 24 rubber

tyred gantry cranes (RTGs) for transferring export containers

at the rate of 18 container moves per hour and 21 blocks

with 25 reach stackers (RS) for stacking import containers.

The port provides 131 units of the internal truck for

transferring containers between the berth quay and the yard

via a 3,000-meter connecting bridge. On the land connecting

side, five entrances and three exits are for external truck

carriers of export containers. Three entrances and three

exits are for external truck carriers of import containers.

5.2 DATA ACQUISITION
Data used for this study was mainly collected under the

collaboration with a port of Thailand.

1. Data for virtual operation environment: the inquiry of

information regarding the physical layout, the number of

facilities, capabilities of facilities and operational policy such

as berthing allocation, container loading/unloading, yard

allocation, and etc., are gathered on an interview. Additional

information of port physical dimension is collected by the

Google Earth. The Figure 4 shows the layout of port yard

configured on the port application (left) and the physical yard

layout (right).

FIGURE 4: PORT YARD LAYOUT
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2. Container input for the port operation: the port connects

external access to the seaside and to hinterland trucks. The

historical transaction of container arrival and departure in the

year 2018 is provided. The information related to the flows of

containers are extracted e.g., the ratio of each container

type, the number of import/export containers accessing on

each transportation modes, frequency of transportation

arrival/departure and etc.

Additional information of vessel visits is collected through the

port website. It provides information of the vessel plan and

visiting status such as the estimated time to arrival (ETA),

the estimated time to departure (ETD), the actual time to

arrival (ATA), the actual time to departure (ATD) and berth

number. Patterns of vessel visits are collected based on the

information as illustrated in the Figure 5.

Further, the input number of containers generated into the

virtual operation should have the similar pattern with the

physical operation as well. Then, data distributions are fitted

to acquire statistics of external truck arrival rate and vessel

transferring rate.

Note for the input of vessel information for executing the DT

model on this experiment, the vessel arrival time is based on

raw historical data while the number of containers carried by

the vessel is calculated based on the statistics of vessel

transferring rate due to the limit of data acquisition.

Therefore, the result of the operation time and departure

time of each vessel from the virtual operation cannot be

compared directly to the vessel result in the physical

operation. The comparison is made on the deviation of

vessel operation time and the deviation of vessel departure

time instead.

3. Uncertainty factors triggering the operation: the vessel

arrival pattern shown in the Figure 5 representing the

berthing plan of vessels on the top of the figure and the

actual berthing period of vessel on the bottom of the figure.

Each box represents a vessel, its left edge is arrival time and

its right edge is departure time. The same box id on the top

section and the bottom section are compared to visual the

difference of the plan of vessel berthing and the actual of

vessel berthing. Based on this information, the deviation

times to the plan of all vessels are specified and fitted into

distributions.

4. Output of port operation: as noted in ’2. Container

input for the port operation’ above, the output of ’vessel

operation time’ and ’vessel departure time’ produced

from the virtual operation should be compared to the

physical operation in order to validate the DT model.

Due to the limitation, the deviation of results should be

used for the model validation instead. Therefore,

dataset of the vessel information from the physical

system is calculated for the deviation of vessel

operation time and the deviation of vessel departure

time (shown in the Figure 6) for later to compare with

the virtual operation output. loading from import yard, as shown in the Figure 8. Vessels

and external trucks are input sources of the model. Vessels

are generated into the berth in the virtual space at the time of

ETA plus an uncertainty of arrival time. While the external

trucks are generated at an arrival rate depending on the day

and the hour. Containers are then processed through the

port operations as programmed in the flows until loading and

unloading of containers to/from the vessel are complete. The

vessel is then departed and the next vessel comes to the

port on its ETA schedule. Note that uncertainty is

configurable to entities of the simulation such external truck

and port facility. The Figure 9 shows the 3D model of port

operation simulation.

 5.4 RESULT: GENERATION OF SIMULATION DATA
A set of 28 input vessels was simulated for 16 days of the

port operation. On the arrival of each vessel to the virtual

berth, the actual arrival time was recorded. Once the loading

and unloading operations were complete and vessel

departed, the actual departure time was recorded as the

example shown in Table 2. The plan of the first vessel arrival

was Feb 12, 20:00:00, but it actually arrived the berth on the

same day 20:58:38 with 58 minutes delay. The vessel

finished the operation of container transferring and departed

on Feb 13, 12:02:17.

The vessel operation time was calculated from ’actual

departure’ - ’actual arrival’, the first vessel operation time

was 15 hours and 3 minutes. The vessel departure time was

the ’actual departure’. These two data parameters are the

output of simulation performed based on the port input such

arrivals of vessels and external trucks and the port operation

process flows.

FIGURE 7: DRAFT OF PORT

LAYOUT FOR THE SIMULATION

FIGURE 5: A PATTERN OF VESSEL

VISITS (PLAN VS. ACTUAL)

FIGURE 6: DISTRIBUTION OF VESSEL OPERATION TIME DEVIATION (LEFT)

AND VESSEL DEPARTURE TIME DEVIATION (RIGHT)

5.3 SIMULATION MODELLING
DT operation environment is programmed to the AnyLogic

simulation based on data collected from 5.2. First, data for

the virtual operation environment is used to construct the

port infrastructure consisting port layout, position of facilities,

instance of internal transportation and etc. The physical port

layout is transformed to fit in the grid-based layout of

simulation with the same dimension as illustrated in the

Figure 7.

Then, discrete events of container operation activities are

implemented in four major operation flows; vessel unloading

to import/export yard, vessel loading from the export yard,

external truck unloading to export yard and external truck 

FIGURE 8: EVENT-BASED SIMULATION FLOW OF

CONTAINERS IN THE PORT OPERATION

FIGURE 9: SIMULATION OF PORT OPERATION

TABLE 2: SIMULATION OUTPUT OF VESSEL

ARRIVAL AND DEPARTURE
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5.5 SIMULATION VALIDATION
The source of model input (’truck arrival rates’, ’vessel arrival

deviation’) and model output (’vessel operation deviation’,

’vessel departure deviation’) are historical data from the

physical operation that are validated.

Each model input constructs its statistic distribution. By

comparing among distribution shapes using Q-Q plot, the

most fitted shape is selected, e.g., truck arrival rate is in

Weibull(19.271, 1.847) for weekdays and in Normal

distribution(34.22, 14.266) for the weekend. On virtual arrival

of vessels, the schedule is based on historical data with a

deviation time. The vessel arrival deviation is Gamma(0.7,5).

The number of vessel loading/unloading containers are

calculated from the vessel transferring rate of each vessel

type. Simulation applies selected distributions into the model.

Output data generated by the simulation are later compare

with the distribution shape such as the Figure 10.

operation interdependency is limited. Currently, it is lacking

of the model to acquire information of port operation with

uncertainty for operational decision. Therefore, it is difficult

for the port to manage uncertainty and make a precise

decision of the plan reactivity such the time when the original

plan becomes incapacitated.

The presented digital twin model was constructed based on

the real physical port infrastructure and the synchronization

run was executed using historical data as input to the model.

The Results of the virtual and the physical system have

similar behavior except in the case of high volume of

container arrival. The expansion of the difference in the two

systems could be wider than the small volume of container

arrival. The operation tuning in the virtual system may

improve this. In addition, the port consists of several

operation components. This model did not use data of the

whole operation in the same time horizon.

The model is validated for physical-to-virtual synchronization.

The usage of virtual data for virtual-to-physical applications

can be explored. We aim at using periodic data of port facility

status to observe the ability to maintain the berth planning by

predicting the estimated time to departure (ETD) of vessel in

the future time horizon.
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FIGURE 10: INPUT VALIDATION OF VESSEL ARRIVAL DEVIATION

Different from the output validation, simulation output data

records are compared directly with historical data. Generally,

about 43.5% of results, the difference of vessel operation

time are about ± 1 hour. In Figure 11, the average of

operation deviation time from the historical data and the

simulated data are slightly different. The local barge with the

less number of containers (about 1-200 containers) spent

less operation time than the physical system. While the

motor vessel with a larger number of containers (about 200-

2000 containers) spent more operation time than the

physical system, as shown in Figure 11.

6 DISCUSSION AND CONCLUSIONS
Adjusting the port operation plan under the uncertain

circumstance is challenged. Estimating an uncertain situation

of a complex environment involving various stakeholders and 

FIGURE 11: OUTPUT VALIDATION OF VESSEL OPERATION TIME
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