Cloud computing architecture proposal for Resource-constrained project scheduling

Authors

  • Renato Penha Universidade Nove de Julho Brazil
  • Cristina Dai Prá Martens Universidade Nove de Julho Brazil
  • Claudia Terezinha Kniess Docente da Universidade Federal de São Paulo e da Universidade São Judas. Pesquisadora colaboradora no Programa USP Cidades Globais do IEA -USP.

DOI:

https://doi.org/10.19255/JMPM02804

Keywords:

Resource-Constrained-Project-Scheduling-Problem, Cloud computing, Multiple projects, Resource optimization, Project elaboration

Abstract

The aim of this paper is to develop a computer model based on service-oriented architecture hosted in cloud computing for the process of human resource allocation in multiple projects. We adopted qualitative approach to present computational. The results demonstrate that the proposed computational model can help to reduce the time spent by managers in the process of project elaboration, cost containment, and the scheduling of projects with impact on Resource-Constrained-Project-Scheduling-Problem. The contribution of this study is evidenced in the use of algorithms to achieve the lowest possible cost while respecting the competence of the human resources available in an environment of multiple projects.

Author Biographies

  • Renato Penha, Universidade Nove de Julho Brazil

    Received his Ph.D. in 2018 from the University Nove de Julho. He is professor of the Postgraduate Program in Project Management at University Nove de Julho. Member of the editorial board and permanent reviewer of journals in the Project Management area. His specialties include cloud computing, software development, and project management.

    E-mail: rp.renatopenha@gmail.com

  • Cristina Dai Prá Martens, Universidade Nove de Julho Brazil

    Received her Ph.D. in 2009 from the from Federal University of Rio Grande do Sul, Brasil. Director and Professor of Postgraduate Programs in Project Management and Administration at Universidade Nove de Julho. Reviewer of scientific journals in Administration and Project Management. Consultant of ​​Entrepreneurship, Information Management, Data Collection, and Analysis. Organizer of the International Module in Project Management at Bentley University, in the United States, for the Professional Master's in Administration - Project Management, from University Nove de Julho.

    E-mail: cristinadpmartens@gmail.com

  • Claudia Terezinha Kniess, Docente da Universidade Federal de São Paulo e da Universidade São Judas. Pesquisadora colaboradora no Programa USP Cidades Globais do IEA -USP.

    Received her Ph.D. in 2005 from the Federal University of Santa Catarina, Brasil. Adjunct Professor at the Federal University of São Paulo. Professor of the Postgraduate Program in Management and Regional Development at University of Taubaté. Professor and researcher at University São Judas Tadeu with experience in undergraduate courses and Professional Master in Civil Engineering. Member of the research groups registered at CNPq research group directory: Smart and Sustainable Cities, Innovation and Sustainability, Development of New Materials from Solid Waste, Sustainability Management, Human Resource Management and Environmental Management, Strategic Management of Educational Projects, and Project Management.

    E-mail: kniesscl@gmail.com

References

Agarwal, A., Colak, S., & Erenguc, S. (2011). Computers & Operations Research A Neurogenetic approach for the resource-constrained project scheduling problem. Computers and Operation Research, 38(1), 44–50. https://doi.org/10.1016/j.cor.2010.01.007

Akers, S. B. (1956). Letter to the Editor — A Graphical Approach to Production Scheduling Problems. Operations Research, 4(2), 244–245.

Akers, S. B., & Friedman, J. (1955). Journal of the Operations Research Society of America A Non-Numerical Approach to Production Scheduling Problems. Journal of the Operations Research Society of America, 3(4), 429–442.

Alcaraz Calero, J. M., & Gutiérrez Aguado, J. (2015). Comparative analysis of architectures for monitoring cloud computing infrastructures. Future Generation Computer Systems, 47, 16–30. https://doi.org/10.1016/j.future.2014.12.008

Arkhipov, D., Battaïa, O., & Lazarev, A. (2019). An efficient pseudo-polynomial algorithm for finding a lower bound on the makespan for the Resource Constrained Project Scheduling Problem. European Journal of Operational Research, 275(1), 35–44. https://doi.org/10.1016/j.ejor.2018.11.005

Arora, Sanjeev, David Karger, M. K. (2003). Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems. Random Structures and Algorithms, 23(1), 73–91. https://doi.org/10.1002/rsa.10072

Barbosa, E. F. (2008). Instrumentos De Coleta De Dados Em Pesquisas Educacionais. (i), 1–10. Retrieved from http://www.serprofessoruniversitario.pro.br/imprimir.php?modulo=21&texto=1325

Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A. H. G. (1983). Scheduling subject to resource constraints: classification and complexity. Discrete Applied Mathematics, 5, 11–24.

Brabra, H., Mtibaa, A., Petrillo, F., Merle, P., Sliman, L., Moha, N., ... & Gargouri, F. (2019). On semantic detection of cloud API (anti) patterns. Information and Software Technology, 107, 65-82.

https://doi.org/10.1016/j.infsof.2018.10.012

Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained project scheduling: Notation, classification, models, and methods. European Journal of Operational Research, 112(1), 3–41. https://doi.org/10.1016/S0377-2217(98)00204-5

Burgelman, J., & Vanhoucke, M. (2019). Computing project makespan distributions: Markovian PERT networks revisited. Computers & Operations Research, 103, 123-133. https://doi.org/10.1016/j.cor.2018.10.017

Chand, S., Singh, H., & Ray, T. (2019). Evolving heuristics for the resource constrained project scheduling problem with dynamic resource disruptions. Swarm and Evolutionary Computation, 44(October 2018), 897–912. https://doi.org/10.1016/j.swevo.2018.09.007

Chang, C. K., Jiang, H. yi, Di, Y., Zhu, D., & Ge, Y. (2008). Time-line based model for software project scheduling with genetic algorithms. Information and Software Technology, 50(11), 1142–1154. https://doi.org/10.1016/j.infsof.2008.03.002

Cynthia, O. U. (2020). Implementation of Project Evaluation and Review Technique (PERT) and Critical Path Method (CPM): A Comparative Study. International Journal of Industrial and Operations Research, 3(004). https://doi.org/10.35840/2633-8947/6504

Coelho, J., & Vanhoucke, M. (2020). Going to the core of hard resource-constrained project scheduling instances. Computers & Operations Research, 121, 104976.

Condotta, A., Knust, S., Meier, D., & Shakhlevich, N. V. (2013). Tabu search and lower bounds for a combined production-transportation problem. Computers and Operations Research, 40(3), 886–900. https://doi.org/10.1016/j.cor.2012.08.017

Cooper, R. G., & Kleinschmidt, E. J. (2001). Stage-gate process for new product success. Innovation Management U, 3, 2001. Retrieved from http://wiki.bio.dtu.dk/teaching/images/3/3c/Stage-gate.pdf

Eugeniusz Nowicki, C. S., & To. (2003). A Fast Taboo Search Algorithm for the Job Shop Problem. Manage. Sci., 42(6), 797–813.

Garg, S. K., Versteeg, S., & Buyya, R. (2013). A framework for ranking of cloud computing services. Future Generation Computer Systems, 29(4), 1012–1023. https://doi.org/10.1016/j.future.2012.06.006

Gartner IT SYMPOSIUM|Xpo. (2019). Gartner IT SYMPOSIUM. Retrieved from https://www.gartner.com/en/conferences/la/symposium-brazil

Gonçalves, J. F., Mendes, J. J. M., & Resende, M. G. C. (2008). A genetic algorithm for the resource constrained multi-project scheduling problem. European Journal of Operational Research, 189(3), 1171–1190. https://doi.org/10.1016/j.ejor.2006.06.074

Group, S. (2019). The Chaos Report. Retrieved from https://www.projectsmart.co.uk/white-papers/chaos-report.pdf

Habibi, F., Barzinpour, F., & Sadjadi, S. J. (2018). Resource-constrained project scheduling problem: review of past and recent developments. Journal of Project Management, 3, 55–88. https://doi.org/10.5267/j.jpm.2018.1.005

Herroelen, W., De Reyck, B., & Demeulemeester, E. (1998). Resource-constrained project scheduling: A survey of recent developments. Computers and Operations Research, 25(4), 279–302. https://doi.org/10.1016/S0305-0548(97)00055-5

Hochbam, D. S. (1997). Approzimation Algorithms for NP-Hard Problems Introduction ( Abridged ). ACM Sigact News, 28(2), 40–52.

Ichihara, J. de A. (2002). Restrição De Recursos ( Resource-Constrained Project Scheduling Problem ). XXII Encontro Nacional de Engenharia de Produção, (3), 1–8.

PMI - Project Management Institute. (2017). Guide to the project Management body of knowledge - Sixth Edition (Project Management Institute, ed.). Pennsylvania USA.

Jeffery, M., & Leliveld, I. (2004). Best practices in IT portfolio management", MIT Sloan Management Review. MIT Sloan Management Review, 45(2), 26–32. https://doi.org/10.1371/journal.pone.0015090

Kerzner, H. (2019). Using the project management maturity model: strategic planning for project management. Sons, John Wiley.

Kim, T., Min, H., Choi, E., & Jung, J. (2020). Optimal job partitioning and allocation for vehicular cloud computing. Future Generation Computer Systems, 108, 82–96. https://doi.org/10.1016/j.future.2020.02.007

Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems. Management Science, 41(10), 1693–1703. https://doi.org/10.1287/mnsc.41.10.1693

Kujala, S., Kujala, J., Turkulainen, V., Artto, K., Aaltonen, P., & Wikstrom, K. (2011). Factors influencing the choice of solution-specific business models. International Journal of Project Management, 29(8), 960–970. https://doi.org/10.1016/j.ijproman.2011.01.009

Kurtulus, I. S., Narula, S. C. (1985). Multi-Project Scheduling : Analysis of Project Performance. IIE Transactions, 17(1), 37–41. https://doi.org/doi:10.1080/07408178508975272

Lageweg, B. J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1977). Job-Shop Scheduling By Implicit Enumeration. Management Science, 24(4), 441–450. https://doi.org/10.1287/mnsc.24.4.441

Laslo, Z. (2010). Project portfolio management: An integrated method for resource planning and scheduling to minimize planning/scheduling-dependent expenses. International Journal of Project Management, 28(6), 609–618. https://doi.org/10.1016/j.ijproman.2009.10.001

Li, K., Xiao, W., & Yang, S. lin. (2019). Scheduling uniform manufacturing resources via the Internet: A review. Journal of Manufacturing Systems, 50(September 2018), 247–262. https://doi.org/10.1016/j.jmsy.2019.01.006

Lunesu, M. I., Münch, J., Marchesi, M., & Kuhrmann, M. (2018). Using simulation for understanding and reproducing distributed software development processes in the cloud. Information and Software Technology, 103, 226-238.

https://doi.org/10.1016/j.infsof.2018.07.004

Mauch, V., Kunze, M., & Hillenbrand, M. (2013). High performance cloud computing. Future Generation Computer Systems, 29(6), 1408–1416. https://doi.org/10.1016/j.future.2012.03.011

Micu, A., Micu, A. E., Susanu, I., & Cristache, N. (2011). Planning and developing of a relationship marketing project: challenges and opportunities. In Zemliak, A and Mastorakis, N (Ed.), Recent Advances In Business Administration (Pp. 21–26). Ag Loannou Theologou 17-23, 15773 Zographou, Athens, Greece: World Scientific And Engineering Acad And Soc.

Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Management Science, 44(5), 714–729. https://doi.org/10.1287/mnsc.44.5.714

Mohanty, R. P., & Siddiq, M. K. (1989). Multiple projects-multiple resources-constrained scheduling : some studies. International Journal of Production Research, 27(2), 261–280. https://doi.org/10.1080/00207548908942546

Noori, S., & Taghizadeh, K. (2018). Multi-mode resource constrained project scheduling problem: a survey of variants, extensions, and methods. International Journal of Industrial Engineering & Production Research, 29(3), 293–320. https://doi.org/10.22068/ijiepr.29.3.293

Pacheco, R. F., & Santoro, M. C. (1999). Proposta de classificação hierarquizada dos modelos de solução para o problema de job shop scheduling. Gestão & Produção, 6(1), 1–15. https://doi.org/10.1590/s0104-530x1999000100001

Padovani, M., De Carvalho, M. M., & Muscat, A. R. N. (2010). Seleção e alocação de recursos em portfólio de projetos: Estudo de caso no setor químico. Gestao e Producao, 17(1), 157–180. https://doi.org/10.1590/s0104-530x2010000100013

Palacios, J. J., González, M. A., Vela, C. R., González-Rodríguez, I., & Puente, J. (2015). Genetic tabu search for the fuzzy flexible job shop problem. Computers and Operations Research, 54, 74–89. https://doi.org/10.1016/j.cor.2014.08.023

Park, J. G., & Lee, J. (2014). Knowledge sharing in information systems development projects: Explicating the role of dependence and trust. International Journal of Project Management, 32(1), 153–165. https://doi.org/10.1016/j.ijproman.2013.02.004

Plekhanova, V. (1999). Capability and Compatibility Measurement in Software Process Improvement. Process Improvement, Proceedings of the 2nd European Software Measurement Conference - FESMA’99, 179–188.

Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A. (2018). An effective approach for software project effort and duration estimation with machine learning algorithms. Journal of Systems and Software, 137, 184–196. https://doi.org/10.1016/j.jss.2017.11.066

Reeves, L., Dunn-Jensen, L. M., Baldwin, T. T., Tatikonda, M. V, & Cornetta, K. (2013). Partnership between CTSI and Business Schools Can Promote Best Practices for Core Facilities and Resources. CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 6(4), 297–302. https://doi.org/10.1111/cts.12059

Sabar, N. R., Turky, A., & Song, A. (2018). A genetic programming based iterated local search for software project scheduling. GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference, 1364–1370. https://doi.org/10.1145/3205455.3205557

Salas-Morera, L., Arauzo-Azofra, A., García-Hernández, L., Palomo-Romero, J. M., & Ayuso-Muñoz, J. L. (2018). New Approach to the Distribution of Project Completion Time in PERT Networks. Journal of Construction Engineering and Management, 144(10), 1–12. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001552

Sallam, K. M., Chakrabortty, R. K., & Ryan, M. J. (2020). A two-stage multi-operator differential evolution algorithm for solving Resource Constrained Project Scheduling problems. Future Generation Computer Systems, 108, 432–444. https://doi.org/10.1016/j.future.2020.02.074

Sandhu, M. A., Al Ameri, T. Z., & Wikstrom, K. (2019). Benchmarking the strategic roles of the project management office (PMO) when developing business ecosystems. BENCHMARKING-AN INTERNATIONAL JOURNAL, 26(2), 452–469. https://doi.org/10.1108/BIJ-03-2018-0058

Schwaber, K., and Beedle, M. (2002). Agile software development with Scrum (Vol. 1). Upper Saddle River: Prentice Hall.

Sönke, H. (2013). Project scheduling with resource capacities and requests varying with time : a case study. Flexible Services and Manufacturing Journal, 25, 74–93. https://doi.org/10.1007/s10696-012-9141-8

Sönke, H. (2015). Handbook on project management and scheduling vol. 1. Handbook on Project Management and Scheduling Vol. 1, 1, 1–663. https://doi.org/10.1007/978-3-319-05443-8

Tuli, S., Sandhu, R., & Buyya, R. (2020). Shared data-aware dynamic resource provisioning and task scheduling for data intensive applications on hybrid clouds using Aneka. Future Generation Computer Systems, 106, 595–606. https://doi.org/10.1016/j.future.2020.01.038

Ulusoy, G., & Özdamar, L. (1989). Heuristic performance and network/resource characteristics in resource-constrained project scheduling. Journal of the Operational Research Society, 40(12), 1145–1152. https://doi.org/10.1057/jors.1989.196

Van Den Eeckhout, M., Maenhout, B., & Vanhoucke, M. (2019). A heuristic procedure to solve the project staffing problem with discrete time/resource trade-offs and personnel scheduling constraints. Computers and Operations Research, 101, 144–161. https://doi.org/10.1016/j.cor.2018.09.008

Vanhoucke, M., & Coelho, J. (2019). Resource-constrained project scheduling with activity splitting and setup times. Computers & Operations Research, 109, 230-249. https://doi.org/10.1016/j.cor.2019.05.004

White, D., & Fortune, J. (2002). Current practice in project management - An empirical study. International Journal of Project Management, 20(1), 1–11. https://doi.org/10.1016/S0263-7863(00)00029-6

Wikstrom, K., Hellstrom, M., Artto, K., Kujala, J., & Kujala, S. (2009). Services in project-based firms - Four types of business logic. International Journal of Project Management, 27(2), 113–122. https://doi.org/10.1016/j.ijproman.2008.09.008

Downloads

Published

2022-05-20

How to Cite

Cloud computing architecture proposal for Resource-constrained project scheduling. (2022). The Journal of Modern Project Management, 9(3). https://doi.org/10.19255/JMPM02804

Similar Articles

1-10 of 424

You may also start an advanced similarity search for this article.