Cloud computing architecture proposal for Resource-constrained project scheduling
DOI:
https://doi.org/10.19255/JMPM02804Keywords:
Resource-Constrained-Project-Scheduling-Problem, Cloud computing, Multiple projects, Resource optimization, Project elaborationAbstract
The aim of this paper is to develop a computer model based on service-oriented architecture hosted in cloud computing for the process of human resource allocation in multiple projects. We adopted qualitative approach to present computational. The results demonstrate that the proposed computational model can help to reduce the time spent by managers in the process of project elaboration, cost containment, and the scheduling of projects with impact on Resource-Constrained-Project-Scheduling-Problem. The contribution of this study is evidenced in the use of algorithms to achieve the lowest possible cost while respecting the competence of the human resources available in an environment of multiple projects.
References
Agarwal, A., Colak, S., & Erenguc, S. (2011). Computers & Operations Research A Neurogenetic approach for the resource-constrained project scheduling problem. Computers and Operation Research, 38(1), 44–50. https://doi.org/10.1016/j.cor.2010.01.007
Akers, S. B. (1956). Letter to the Editor — A Graphical Approach to Production Scheduling Problems. Operations Research, 4(2), 244–245.
Akers, S. B., & Friedman, J. (1955). Journal of the Operations Research Society of America A Non-Numerical Approach to Production Scheduling Problems. Journal of the Operations Research Society of America, 3(4), 429–442.
Alcaraz Calero, J. M., & Gutiérrez Aguado, J. (2015). Comparative analysis of architectures for monitoring cloud computing infrastructures. Future Generation Computer Systems, 47, 16–30. https://doi.org/10.1016/j.future.2014.12.008
Arkhipov, D., Battaïa, O., & Lazarev, A. (2019). An efficient pseudo-polynomial algorithm for finding a lower bound on the makespan for the Resource Constrained Project Scheduling Problem. European Journal of Operational Research, 275(1), 35–44. https://doi.org/10.1016/j.ejor.2018.11.005
Arora, Sanjeev, David Karger, M. K. (2003). Polynomial Time Approximation Schemes for Dense Instances of NP-Hard Problems. Random Structures and Algorithms, 23(1), 73–91. https://doi.org/10.1002/rsa.10072
Barbosa, E. F. (2008). Instrumentos De Coleta De Dados Em Pesquisas Educacionais. (i), 1–10. Retrieved from http://www.serprofessoruniversitario.pro.br/imprimir.php?modulo=21&texto=1325
Blazewicz, J., Lenstra, J.K., Rinnooy Kan, A. H. G. (1983). Scheduling subject to resource constraints: classification and complexity. Discrete Applied Mathematics, 5, 11–24.
Brabra, H., Mtibaa, A., Petrillo, F., Merle, P., Sliman, L., Moha, N., ... & Gargouri, F. (2019). On semantic detection of cloud API (anti) patterns. Information and Software Technology, 107, 65-82.
https://doi.org/10.1016/j.infsof.2018.10.012
Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained project scheduling: Notation, classification, models, and methods. European Journal of Operational Research, 112(1), 3–41. https://doi.org/10.1016/S0377-2217(98)00204-5
Burgelman, J., & Vanhoucke, M. (2019). Computing project makespan distributions: Markovian PERT networks revisited. Computers & Operations Research, 103, 123-133. https://doi.org/10.1016/j.cor.2018.10.017
Chand, S., Singh, H., & Ray, T. (2019). Evolving heuristics for the resource constrained project scheduling problem with dynamic resource disruptions. Swarm and Evolutionary Computation, 44(October 2018), 897–912. https://doi.org/10.1016/j.swevo.2018.09.007
Chang, C. K., Jiang, H. yi, Di, Y., Zhu, D., & Ge, Y. (2008). Time-line based model for software project scheduling with genetic algorithms. Information and Software Technology, 50(11), 1142–1154. https://doi.org/10.1016/j.infsof.2008.03.002
Cynthia, O. U. (2020). Implementation of Project Evaluation and Review Technique (PERT) and Critical Path Method (CPM): A Comparative Study. International Journal of Industrial and Operations Research, 3(004). https://doi.org/10.35840/2633-8947/6504
Coelho, J., & Vanhoucke, M. (2020). Going to the core of hard resource-constrained project scheduling instances. Computers & Operations Research, 121, 104976.
Condotta, A., Knust, S., Meier, D., & Shakhlevich, N. V. (2013). Tabu search and lower bounds for a combined production-transportation problem. Computers and Operations Research, 40(3), 886–900. https://doi.org/10.1016/j.cor.2012.08.017
Cooper, R. G., & Kleinschmidt, E. J. (2001). Stage-gate process for new product success. Innovation Management U, 3, 2001. Retrieved from http://wiki.bio.dtu.dk/teaching/images/3/3c/Stage-gate.pdf
Eugeniusz Nowicki, C. S., & To. (2003). A Fast Taboo Search Algorithm for the Job Shop Problem. Manage. Sci., 42(6), 797–813.
Garg, S. K., Versteeg, S., & Buyya, R. (2013). A framework for ranking of cloud computing services. Future Generation Computer Systems, 29(4), 1012–1023. https://doi.org/10.1016/j.future.2012.06.006
Gartner IT SYMPOSIUM|Xpo. (2019). Gartner IT SYMPOSIUM. Retrieved from https://www.gartner.com/en/conferences/la/symposium-brazil
Gonçalves, J. F., Mendes, J. J. M., & Resende, M. G. C. (2008). A genetic algorithm for the resource constrained multi-project scheduling problem. European Journal of Operational Research, 189(3), 1171–1190. https://doi.org/10.1016/j.ejor.2006.06.074
Group, S. (2019). The Chaos Report. Retrieved from https://www.projectsmart.co.uk/white-papers/chaos-report.pdf
Habibi, F., Barzinpour, F., & Sadjadi, S. J. (2018). Resource-constrained project scheduling problem: review of past and recent developments. Journal of Project Management, 3, 55–88. https://doi.org/10.5267/j.jpm.2018.1.005
Herroelen, W., De Reyck, B., & Demeulemeester, E. (1998). Resource-constrained project scheduling: A survey of recent developments. Computers and Operations Research, 25(4), 279–302. https://doi.org/10.1016/S0305-0548(97)00055-5
Hochbam, D. S. (1997). Approzimation Algorithms for NP-Hard Problems Introduction ( Abridged ). ACM Sigact News, 28(2), 40–52.
Ichihara, J. de A. (2002). Restrição De Recursos ( Resource-Constrained Project Scheduling Problem ). XXII Encontro Nacional de Engenharia de Produção, (3), 1–8.
PMI - Project Management Institute. (2017). Guide to the project Management body of knowledge - Sixth Edition (Project Management Institute, ed.). Pennsylvania USA.
Jeffery, M., & Leliveld, I. (2004). Best practices in IT portfolio management", MIT Sloan Management Review. MIT Sloan Management Review, 45(2), 26–32. https://doi.org/10.1371/journal.pone.0015090
Kerzner, H. (2019). Using the project management maturity model: strategic planning for project management. Sons, John Wiley.
Kim, T., Min, H., Choi, E., & Jung, J. (2020). Optimal job partitioning and allocation for vehicular cloud computing. Future Generation Computer Systems, 108, 82–96. https://doi.org/10.1016/j.future.2020.02.007
Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and Generation of a General Class of Resource-Constrained Project Scheduling Problems. Management Science, 41(10), 1693–1703. https://doi.org/10.1287/mnsc.41.10.1693
Kujala, S., Kujala, J., Turkulainen, V., Artto, K., Aaltonen, P., & Wikstrom, K. (2011). Factors influencing the choice of solution-specific business models. International Journal of Project Management, 29(8), 960–970. https://doi.org/10.1016/j.ijproman.2011.01.009
Kurtulus, I. S., Narula, S. C. (1985). Multi-Project Scheduling : Analysis of Project Performance. IIE Transactions, 17(1), 37–41. https://doi.org/doi:10.1080/07408178508975272
Lageweg, B. J., Lenstra, J. K., & Rinnooy Kan, A. H. G. (1977). Job-Shop Scheduling By Implicit Enumeration. Management Science, 24(4), 441–450. https://doi.org/10.1287/mnsc.24.4.441
Laslo, Z. (2010). Project portfolio management: An integrated method for resource planning and scheduling to minimize planning/scheduling-dependent expenses. International Journal of Project Management, 28(6), 609–618. https://doi.org/10.1016/j.ijproman.2009.10.001
Li, K., Xiao, W., & Yang, S. lin. (2019). Scheduling uniform manufacturing resources via the Internet: A review. Journal of Manufacturing Systems, 50(September 2018), 247–262. https://doi.org/10.1016/j.jmsy.2019.01.006
Lunesu, M. I., Münch, J., Marchesi, M., & Kuhrmann, M. (2018). Using simulation for understanding and reproducing distributed software development processes in the cloud. Information and Software Technology, 103, 226-238.
https://doi.org/10.1016/j.infsof.2018.07.004
Mauch, V., Kunze, M., & Hillenbrand, M. (2013). High performance cloud computing. Future Generation Computer Systems, 29(6), 1408–1416. https://doi.org/10.1016/j.future.2012.03.011
Micu, A., Micu, A. E., Susanu, I., & Cristache, N. (2011). Planning and developing of a relationship marketing project: challenges and opportunities. In Zemliak, A and Mastorakis, N (Ed.), Recent Advances In Business Administration (Pp. 21–26). Ag Loannou Theologou 17-23, 15773 Zographou, Athens, Greece: World Scientific And Engineering Acad And Soc.
Mingozzi, A., Maniezzo, V., Ricciardelli, S., & Bianco, L. (1998). An exact algorithm for the resource-constrained project scheduling problem based on a new mathematical formulation. Management Science, 44(5), 714–729. https://doi.org/10.1287/mnsc.44.5.714
Mohanty, R. P., & Siddiq, M. K. (1989). Multiple projects-multiple resources-constrained scheduling : some studies. International Journal of Production Research, 27(2), 261–280. https://doi.org/10.1080/00207548908942546
Noori, S., & Taghizadeh, K. (2018). Multi-mode resource constrained project scheduling problem: a survey of variants, extensions, and methods. International Journal of Industrial Engineering & Production Research, 29(3), 293–320. https://doi.org/10.22068/ijiepr.29.3.293
Pacheco, R. F., & Santoro, M. C. (1999). Proposta de classificação hierarquizada dos modelos de solução para o problema de job shop scheduling. Gestão & Produção, 6(1), 1–15. https://doi.org/10.1590/s0104-530x1999000100001
Padovani, M., De Carvalho, M. M., & Muscat, A. R. N. (2010). Seleção e alocação de recursos em portfólio de projetos: Estudo de caso no setor químico. Gestao e Producao, 17(1), 157–180. https://doi.org/10.1590/s0104-530x2010000100013
Palacios, J. J., González, M. A., Vela, C. R., González-Rodríguez, I., & Puente, J. (2015). Genetic tabu search for the fuzzy flexible job shop problem. Computers and Operations Research, 54, 74–89. https://doi.org/10.1016/j.cor.2014.08.023
Park, J. G., & Lee, J. (2014). Knowledge sharing in information systems development projects: Explicating the role of dependence and trust. International Journal of Project Management, 32(1), 153–165. https://doi.org/10.1016/j.ijproman.2013.02.004
Plekhanova, V. (1999). Capability and Compatibility Measurement in Software Process Improvement. Process Improvement, Proceedings of the 2nd European Software Measurement Conference - FESMA’99, 179–188.
Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A. (2018). An effective approach for software project effort and duration estimation with machine learning algorithms. Journal of Systems and Software, 137, 184–196. https://doi.org/10.1016/j.jss.2017.11.066
Reeves, L., Dunn-Jensen, L. M., Baldwin, T. T., Tatikonda, M. V, & Cornetta, K. (2013). Partnership between CTSI and Business Schools Can Promote Best Practices for Core Facilities and Resources. CTS-CLINICAL AND TRANSLATIONAL SCIENCE, 6(4), 297–302. https://doi.org/10.1111/cts.12059
Sabar, N. R., Turky, A., & Song, A. (2018). A genetic programming based iterated local search for software project scheduling. GECCO 2018 - Proceedings of the 2018 Genetic and Evolutionary Computation Conference, 1364–1370. https://doi.org/10.1145/3205455.3205557
Salas-Morera, L., Arauzo-Azofra, A., García-Hernández, L., Palomo-Romero, J. M., & Ayuso-Muñoz, J. L. (2018). New Approach to the Distribution of Project Completion Time in PERT Networks. Journal of Construction Engineering and Management, 144(10), 1–12. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001552
Sallam, K. M., Chakrabortty, R. K., & Ryan, M. J. (2020). A two-stage multi-operator differential evolution algorithm for solving Resource Constrained Project Scheduling problems. Future Generation Computer Systems, 108, 432–444. https://doi.org/10.1016/j.future.2020.02.074
Sandhu, M. A., Al Ameri, T. Z., & Wikstrom, K. (2019). Benchmarking the strategic roles of the project management office (PMO) when developing business ecosystems. BENCHMARKING-AN INTERNATIONAL JOURNAL, 26(2), 452–469. https://doi.org/10.1108/BIJ-03-2018-0058
Schwaber, K., and Beedle, M. (2002). Agile software development with Scrum (Vol. 1). Upper Saddle River: Prentice Hall.
Sönke, H. (2013). Project scheduling with resource capacities and requests varying with time : a case study. Flexible Services and Manufacturing Journal, 25, 74–93. https://doi.org/10.1007/s10696-012-9141-8
Sönke, H. (2015). Handbook on project management and scheduling vol. 1. Handbook on Project Management and Scheduling Vol. 1, 1, 1–663. https://doi.org/10.1007/978-3-319-05443-8
Tuli, S., Sandhu, R., & Buyya, R. (2020). Shared data-aware dynamic resource provisioning and task scheduling for data intensive applications on hybrid clouds using Aneka. Future Generation Computer Systems, 106, 595–606. https://doi.org/10.1016/j.future.2020.01.038
Ulusoy, G., & Özdamar, L. (1989). Heuristic performance and network/resource characteristics in resource-constrained project scheduling. Journal of the Operational Research Society, 40(12), 1145–1152. https://doi.org/10.1057/jors.1989.196
Van Den Eeckhout, M., Maenhout, B., & Vanhoucke, M. (2019). A heuristic procedure to solve the project staffing problem with discrete time/resource trade-offs and personnel scheduling constraints. Computers and Operations Research, 101, 144–161. https://doi.org/10.1016/j.cor.2018.09.008
Vanhoucke, M., & Coelho, J. (2019). Resource-constrained project scheduling with activity splitting and setup times. Computers & Operations Research, 109, 230-249. https://doi.org/10.1016/j.cor.2019.05.004
White, D., & Fortune, J. (2002). Current practice in project management - An empirical study. International Journal of Project Management, 20(1), 1–11. https://doi.org/10.1016/S0263-7863(00)00029-6
Wikstrom, K., Hellstrom, M., Artto, K., Kujala, J., & Kujala, S. (2009). Services in project-based firms - Four types of business logic. International Journal of Project Management, 27(2), 113–122. https://doi.org/10.1016/j.ijproman.2008.09.008
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Renato Penha, Cristina Dai Prá Martens, Claudia Terezinha Kniess

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.